Class EvaluationJobConfig

  • All Implemented Interfaces:
    EvaluationJobConfigOrBuilder, com.google.protobuf.Message, com.google.protobuf.MessageLite, com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder, Serializable

    public final class EvaluationJobConfig
    extends com.google.protobuf.GeneratedMessageV3
    implements EvaluationJobConfigOrBuilder
     Configures specific details of how a continuous evaluation job works. Provide
     this configuration when you create an EvaluationJob.
     
    Protobuf type google.cloud.datalabeling.v1beta1.EvaluationJobConfig
    See Also:
    Serialized Form
    • Field Detail

      • IMAGE_CLASSIFICATION_CONFIG_FIELD_NUMBER

        public static final int IMAGE_CLASSIFICATION_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
      • BOUNDING_POLY_CONFIG_FIELD_NUMBER

        public static final int BOUNDING_POLY_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
      • TEXT_CLASSIFICATION_CONFIG_FIELD_NUMBER

        public static final int TEXT_CLASSIFICATION_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
      • INPUT_CONFIG_FIELD_NUMBER

        public static final int INPUT_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
      • EVALUATION_CONFIG_FIELD_NUMBER

        public static final int EVALUATION_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
      • HUMAN_ANNOTATION_CONFIG_FIELD_NUMBER

        public static final int HUMAN_ANNOTATION_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
      • BIGQUERY_IMPORT_KEYS_FIELD_NUMBER

        public static final int BIGQUERY_IMPORT_KEYS_FIELD_NUMBER
        See Also:
        Constant Field Values
      • EXAMPLE_COUNT_FIELD_NUMBER

        public static final int EXAMPLE_COUNT_FIELD_NUMBER
        See Also:
        Constant Field Values
      • EXAMPLE_SAMPLE_PERCENTAGE_FIELD_NUMBER

        public static final int EXAMPLE_SAMPLE_PERCENTAGE_FIELD_NUMBER
        See Also:
        Constant Field Values
      • EVALUATION_JOB_ALERT_CONFIG_FIELD_NUMBER

        public static final int EVALUATION_JOB_ALERT_CONFIG_FIELD_NUMBER
        See Also:
        Constant Field Values
    • Method Detail

      • newInstance

        protected Object newInstance​(com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter unused)
        Overrides:
        newInstance in class com.google.protobuf.GeneratedMessageV3
      • getDescriptor

        public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
      • internalGetMapField

        protected com.google.protobuf.MapField internalGetMapField​(int number)
        Overrides:
        internalGetMapField in class com.google.protobuf.GeneratedMessageV3
      • internalGetFieldAccessorTable

        protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
        Specified by:
        internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessageV3
      • hasImageClassificationConfig

        public boolean hasImageClassificationConfig()
         Specify this field if your model version performs image classification or
         general classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
        Specified by:
        hasImageClassificationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the imageClassificationConfig field is set.
      • getImageClassificationConfig

        public ImageClassificationConfig getImageClassificationConfig()
         Specify this field if your model version performs image classification or
         general classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
        Specified by:
        getImageClassificationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The imageClassificationConfig.
      • getImageClassificationConfigOrBuilder

        public ImageClassificationConfigOrBuilder getImageClassificationConfigOrBuilder()
         Specify this field if your model version performs image classification or
         general classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
        Specified by:
        getImageClassificationConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • hasBoundingPolyConfig

        public boolean hasBoundingPolyConfig()
         Specify this field if your model version performs image object detection
         (bounding box detection).
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         
        .google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
        Specified by:
        hasBoundingPolyConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the boundingPolyConfig field is set.
      • getBoundingPolyConfig

        public BoundingPolyConfig getBoundingPolyConfig()
         Specify this field if your model version performs image object detection
         (bounding box detection).
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         
        .google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
        Specified by:
        getBoundingPolyConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The boundingPolyConfig.
      • getBoundingPolyConfigOrBuilder

        public BoundingPolyConfigOrBuilder getBoundingPolyConfigOrBuilder()
         Specify this field if your model version performs image object detection
         (bounding box detection).
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         
        .google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
        Specified by:
        getBoundingPolyConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • hasTextClassificationConfig

        public boolean hasTextClassificationConfig()
         Specify this field if your model version performs text classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
        Specified by:
        hasTextClassificationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the textClassificationConfig field is set.
      • getTextClassificationConfig

        public TextClassificationConfig getTextClassificationConfig()
         Specify this field if your model version performs text classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
        Specified by:
        getTextClassificationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The textClassificationConfig.
      • getTextClassificationConfigOrBuilder

        public TextClassificationConfigOrBuilder getTextClassificationConfigOrBuilder()
         Specify this field if your model version performs text classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
        Specified by:
        getTextClassificationConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • hasInputConfig

        public boolean hasInputConfig()
         Rquired. Details for the sampled prediction input. Within this
         configuration, there are requirements for several fields:
        
         * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
         * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
           `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
           or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
         * If your machine learning model performs classification, you must specify
           `classificationMetadata.isMultiLabel`.
         * You must specify `bigquerySource` (not `gcsSource`).
         
        .google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
        Specified by:
        hasInputConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the inputConfig field is set.
      • getInputConfig

        public InputConfig getInputConfig()
         Rquired. Details for the sampled prediction input. Within this
         configuration, there are requirements for several fields:
        
         * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
         * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
           `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
           or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
         * If your machine learning model performs classification, you must specify
           `classificationMetadata.isMultiLabel`.
         * You must specify `bigquerySource` (not `gcsSource`).
         
        .google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
        Specified by:
        getInputConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The inputConfig.
      • getInputConfigOrBuilder

        public InputConfigOrBuilder getInputConfigOrBuilder()
         Rquired. Details for the sampled prediction input. Within this
         configuration, there are requirements for several fields:
        
         * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
         * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
           `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
           or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
         * If your machine learning model performs classification, you must specify
           `classificationMetadata.isMultiLabel`.
         * You must specify `bigquerySource` (not `gcsSource`).
         
        .google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
        Specified by:
        getInputConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • hasEvaluationConfig

        public boolean hasEvaluationConfig()
         Required. Details for calculating evaluation metrics and creating
         [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
         detection, you must specify the `boundingBoxEvaluationOptions` field within
         this configuration. Otherwise, provide an empty object for this
         configuration.
         
        .google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
        Specified by:
        hasEvaluationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the evaluationConfig field is set.
      • getEvaluationConfig

        public EvaluationConfig getEvaluationConfig()
         Required. Details for calculating evaluation metrics and creating
         [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
         detection, you must specify the `boundingBoxEvaluationOptions` field within
         this configuration. Otherwise, provide an empty object for this
         configuration.
         
        .google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
        Specified by:
        getEvaluationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The evaluationConfig.
      • getEvaluationConfigOrBuilder

        public EvaluationConfigOrBuilder getEvaluationConfigOrBuilder()
         Required. Details for calculating evaluation metrics and creating
         [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
         detection, you must specify the `boundingBoxEvaluationOptions` field within
         this configuration. Otherwise, provide an empty object for this
         configuration.
         
        .google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
        Specified by:
        getEvaluationConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • hasHumanAnnotationConfig

        public boolean hasHumanAnnotationConfig()
         Optional. Details for human annotation of your data. If you set
         [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
         `true` for this evaluation job, then you must specify this field. If you
         plan to provide your own ground truth labels, then omit this field.
        
         Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
         specify this field. Provide the name of the instruction resource in the
         `instruction` field within this configuration.
         
        .google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
        Specified by:
        hasHumanAnnotationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the humanAnnotationConfig field is set.
      • getHumanAnnotationConfig

        public HumanAnnotationConfig getHumanAnnotationConfig()
         Optional. Details for human annotation of your data. If you set
         [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
         `true` for this evaluation job, then you must specify this field. If you
         plan to provide your own ground truth labels, then omit this field.
        
         Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
         specify this field. Provide the name of the instruction resource in the
         `instruction` field within this configuration.
         
        .google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
        Specified by:
        getHumanAnnotationConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The humanAnnotationConfig.
      • getHumanAnnotationConfigOrBuilder

        public HumanAnnotationConfigOrBuilder getHumanAnnotationConfigOrBuilder()
         Optional. Details for human annotation of your data. If you set
         [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
         `true` for this evaluation job, then you must specify this field. If you
         plan to provide your own ground truth labels, then omit this field.
        
         Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
         specify this field. Provide the name of the instruction resource in the
         `instruction` field within this configuration.
         
        .google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
        Specified by:
        getHumanAnnotationConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • getBigqueryImportKeysCount

        public int getBigqueryImportKeysCount()
        Description copied from interface: EvaluationJobConfigOrBuilder
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
        Specified by:
        getBigqueryImportKeysCount in interface EvaluationJobConfigOrBuilder
      • containsBigqueryImportKeys

        public boolean containsBigqueryImportKeys​(String key)
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
        Specified by:
        containsBigqueryImportKeys in interface EvaluationJobConfigOrBuilder
      • getBigqueryImportKeysMap

        public Map<String,​String> getBigqueryImportKeysMap()
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
        Specified by:
        getBigqueryImportKeysMap in interface EvaluationJobConfigOrBuilder
      • getBigqueryImportKeysOrDefault

        public String getBigqueryImportKeysOrDefault​(String key,
                                                     String defaultValue)
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
        Specified by:
        getBigqueryImportKeysOrDefault in interface EvaluationJobConfigOrBuilder
      • getBigqueryImportKeysOrThrow

        public String getBigqueryImportKeysOrThrow​(String key)
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
        Specified by:
        getBigqueryImportKeysOrThrow in interface EvaluationJobConfigOrBuilder
      • getExampleCount

        public int getExampleCount()
         Required. The maximum number of predictions to sample and save to BigQuery
         during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit
         overrides `example_sample_percentage`: even if the service has not sampled
         enough predictions to fulfill `example_sample_perecentage` during an
         interval, it stops sampling predictions when it meets this limit.
         
        int32 example_count = 10;
        Specified by:
        getExampleCount in interface EvaluationJobConfigOrBuilder
        Returns:
        The exampleCount.
      • getExampleSamplePercentage

        public double getExampleSamplePercentage()
         Required. Fraction of predictions to sample and save to BigQuery during
         each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means
         10% of predictions served by your model version get saved to BigQuery.
         
        double example_sample_percentage = 11;
        Specified by:
        getExampleSamplePercentage in interface EvaluationJobConfigOrBuilder
        Returns:
        The exampleSamplePercentage.
      • hasEvaluationJobAlertConfig

        public boolean hasEvaluationJobAlertConfig()
         Optional. Configuration details for evaluation job alerts. Specify this
         field if you want to receive email alerts if the evaluation job finds that
         your predictions have low mean average precision during a run.
         
        .google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
        Specified by:
        hasEvaluationJobAlertConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        Whether the evaluationJobAlertConfig field is set.
      • getEvaluationJobAlertConfig

        public EvaluationJobAlertConfig getEvaluationJobAlertConfig()
         Optional. Configuration details for evaluation job alerts. Specify this
         field if you want to receive email alerts if the evaluation job finds that
         your predictions have low mean average precision during a run.
         
        .google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
        Specified by:
        getEvaluationJobAlertConfig in interface EvaluationJobConfigOrBuilder
        Returns:
        The evaluationJobAlertConfig.
      • getEvaluationJobAlertConfigOrBuilder

        public EvaluationJobAlertConfigOrBuilder getEvaluationJobAlertConfigOrBuilder()
         Optional. Configuration details for evaluation job alerts. Specify this
         field if you want to receive email alerts if the evaluation job finds that
         your predictions have low mean average precision during a run.
         
        .google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
        Specified by:
        getEvaluationJobAlertConfigOrBuilder in interface EvaluationJobConfigOrBuilder
      • isInitialized

        public final boolean isInitialized()
        Specified by:
        isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
        Overrides:
        isInitialized in class com.google.protobuf.GeneratedMessageV3
      • writeTo

        public void writeTo​(com.google.protobuf.CodedOutputStream output)
                     throws IOException
        Specified by:
        writeTo in interface com.google.protobuf.MessageLite
        Overrides:
        writeTo in class com.google.protobuf.GeneratedMessageV3
        Throws:
        IOException
      • getSerializedSize

        public int getSerializedSize()
        Specified by:
        getSerializedSize in interface com.google.protobuf.MessageLite
        Overrides:
        getSerializedSize in class com.google.protobuf.GeneratedMessageV3
      • equals

        public boolean equals​(Object obj)
        Specified by:
        equals in interface com.google.protobuf.Message
        Overrides:
        equals in class com.google.protobuf.AbstractMessage
      • hashCode

        public int hashCode()
        Specified by:
        hashCode in interface com.google.protobuf.Message
        Overrides:
        hashCode in class com.google.protobuf.AbstractMessage
      • parseFrom

        public static EvaluationJobConfig parseFrom​(ByteBuffer data)
                                             throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static EvaluationJobConfig parseFrom​(ByteBuffer data,
                                                    com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                             throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static EvaluationJobConfig parseFrom​(com.google.protobuf.ByteString data)
                                             throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static EvaluationJobConfig parseFrom​(com.google.protobuf.ByteString data,
                                                    com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                             throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static EvaluationJobConfig parseFrom​(byte[] data)
                                             throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static EvaluationJobConfig parseFrom​(byte[] data,
                                                    com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                             throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static EvaluationJobConfig parseFrom​(com.google.protobuf.CodedInputStream input,
                                                    com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                             throws IOException
        Throws:
        IOException
      • newBuilderForType

        public EvaluationJobConfig.Builder newBuilderForType()
        Specified by:
        newBuilderForType in interface com.google.protobuf.Message
        Specified by:
        newBuilderForType in interface com.google.protobuf.MessageLite
      • toBuilder

        public EvaluationJobConfig.Builder toBuilder()
        Specified by:
        toBuilder in interface com.google.protobuf.Message
        Specified by:
        toBuilder in interface com.google.protobuf.MessageLite
      • newBuilderForType

        protected EvaluationJobConfig.Builder newBuilderForType​(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)
        Specified by:
        newBuilderForType in class com.google.protobuf.GeneratedMessageV3
      • getParserForType

        public com.google.protobuf.Parser<EvaluationJobConfig> getParserForType()
        Specified by:
        getParserForType in interface com.google.protobuf.Message
        Specified by:
        getParserForType in interface com.google.protobuf.MessageLite
        Overrides:
        getParserForType in class com.google.protobuf.GeneratedMessageV3
      • getDefaultInstanceForType

        public EvaluationJobConfig getDefaultInstanceForType()
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder