Class EvaluationJobConfig.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
- com.google.cloud.datalabeling.v1beta1.EvaluationJobConfig.Builder
-
- All Implemented Interfaces:
EvaluationJobConfigOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- EvaluationJobConfig
public static final class EvaluationJobConfig.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder> implements EvaluationJobConfigOrBuilder
Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.
Protobuf typegoogle.cloud.datalabeling.v1beta1.EvaluationJobConfig
-
-
Method Summary
-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetMapField
protected com.google.protobuf.MapField internalGetMapField(int number)
- Overrides:
internalGetMapField
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
internalGetMutableMapField
protected com.google.protobuf.MapField internalGetMutableMapField(int number)
- Overrides:
internalGetMutableMapField
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
clear
public EvaluationJobConfig.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
getDefaultInstanceForType
public EvaluationJobConfig getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public EvaluationJobConfig build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public EvaluationJobConfig buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public EvaluationJobConfig.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
setField
public EvaluationJobConfig.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
clearField
public EvaluationJobConfig.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
clearOneof
public EvaluationJobConfig.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
setRepeatedField
public EvaluationJobConfig.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
addRepeatedField
public EvaluationJobConfig.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
mergeFrom
public EvaluationJobConfig.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<EvaluationJobConfig.Builder>
-
mergeFrom
public EvaluationJobConfig.Builder mergeFrom(EvaluationJobConfig other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
mergeFrom
public EvaluationJobConfig.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<EvaluationJobConfig.Builder>
- Throws:
IOException
-
getHumanAnnotationRequestConfigCase
public EvaluationJobConfig.HumanAnnotationRequestConfigCase getHumanAnnotationRequestConfigCase()
- Specified by:
getHumanAnnotationRequestConfigCase
in interfaceEvaluationJobConfigOrBuilder
-
clearHumanAnnotationRequestConfig
public EvaluationJobConfig.Builder clearHumanAnnotationRequestConfig()
-
hasImageClassificationConfig
public boolean hasImageClassificationConfig()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
- Specified by:
hasImageClassificationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the imageClassificationConfig field is set.
-
getImageClassificationConfig
public ImageClassificationConfig getImageClassificationConfig()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
- Specified by:
getImageClassificationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The imageClassificationConfig.
-
setImageClassificationConfig
public EvaluationJobConfig.Builder setImageClassificationConfig(ImageClassificationConfig value)
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
-
setImageClassificationConfig
public EvaluationJobConfig.Builder setImageClassificationConfig(ImageClassificationConfig.Builder builderForValue)
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
-
mergeImageClassificationConfig
public EvaluationJobConfig.Builder mergeImageClassificationConfig(ImageClassificationConfig value)
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
-
clearImageClassificationConfig
public EvaluationJobConfig.Builder clearImageClassificationConfig()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
-
getImageClassificationConfigBuilder
public ImageClassificationConfig.Builder getImageClassificationConfigBuilder()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
-
getImageClassificationConfigOrBuilder
public ImageClassificationConfigOrBuilder getImageClassificationConfigOrBuilder()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
- Specified by:
getImageClassificationConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
hasBoundingPolyConfig
public boolean hasBoundingPolyConfig()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
- Specified by:
hasBoundingPolyConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the boundingPolyConfig field is set.
-
getBoundingPolyConfig
public BoundingPolyConfig getBoundingPolyConfig()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
- Specified by:
getBoundingPolyConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The boundingPolyConfig.
-
setBoundingPolyConfig
public EvaluationJobConfig.Builder setBoundingPolyConfig(BoundingPolyConfig value)
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
-
setBoundingPolyConfig
public EvaluationJobConfig.Builder setBoundingPolyConfig(BoundingPolyConfig.Builder builderForValue)
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
-
mergeBoundingPolyConfig
public EvaluationJobConfig.Builder mergeBoundingPolyConfig(BoundingPolyConfig value)
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
-
clearBoundingPolyConfig
public EvaluationJobConfig.Builder clearBoundingPolyConfig()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
-
getBoundingPolyConfigBuilder
public BoundingPolyConfig.Builder getBoundingPolyConfigBuilder()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
-
getBoundingPolyConfigOrBuilder
public BoundingPolyConfigOrBuilder getBoundingPolyConfigOrBuilder()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
- Specified by:
getBoundingPolyConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
hasTextClassificationConfig
public boolean hasTextClassificationConfig()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
- Specified by:
hasTextClassificationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the textClassificationConfig field is set.
-
getTextClassificationConfig
public TextClassificationConfig getTextClassificationConfig()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
- Specified by:
getTextClassificationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The textClassificationConfig.
-
setTextClassificationConfig
public EvaluationJobConfig.Builder setTextClassificationConfig(TextClassificationConfig value)
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
-
setTextClassificationConfig
public EvaluationJobConfig.Builder setTextClassificationConfig(TextClassificationConfig.Builder builderForValue)
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
-
mergeTextClassificationConfig
public EvaluationJobConfig.Builder mergeTextClassificationConfig(TextClassificationConfig value)
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
-
clearTextClassificationConfig
public EvaluationJobConfig.Builder clearTextClassificationConfig()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
-
getTextClassificationConfigBuilder
public TextClassificationConfig.Builder getTextClassificationConfigBuilder()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
-
getTextClassificationConfigOrBuilder
public TextClassificationConfigOrBuilder getTextClassificationConfigOrBuilder()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
- Specified by:
getTextClassificationConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
hasInputConfig
public boolean hasInputConfig()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
- Specified by:
hasInputConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the inputConfig field is set.
-
getInputConfig
public InputConfig getInputConfig()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
- Specified by:
getInputConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The inputConfig.
-
setInputConfig
public EvaluationJobConfig.Builder setInputConfig(InputConfig value)
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
-
setInputConfig
public EvaluationJobConfig.Builder setInputConfig(InputConfig.Builder builderForValue)
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
-
mergeInputConfig
public EvaluationJobConfig.Builder mergeInputConfig(InputConfig value)
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
-
clearInputConfig
public EvaluationJobConfig.Builder clearInputConfig()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
-
getInputConfigBuilder
public InputConfig.Builder getInputConfigBuilder()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
-
getInputConfigOrBuilder
public InputConfigOrBuilder getInputConfigOrBuilder()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
- Specified by:
getInputConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
hasEvaluationConfig
public boolean hasEvaluationConfig()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
- Specified by:
hasEvaluationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the evaluationConfig field is set.
-
getEvaluationConfig
public EvaluationConfig getEvaluationConfig()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
- Specified by:
getEvaluationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The evaluationConfig.
-
setEvaluationConfig
public EvaluationJobConfig.Builder setEvaluationConfig(EvaluationConfig value)
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
-
setEvaluationConfig
public EvaluationJobConfig.Builder setEvaluationConfig(EvaluationConfig.Builder builderForValue)
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
-
mergeEvaluationConfig
public EvaluationJobConfig.Builder mergeEvaluationConfig(EvaluationConfig value)
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
-
clearEvaluationConfig
public EvaluationJobConfig.Builder clearEvaluationConfig()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
-
getEvaluationConfigBuilder
public EvaluationConfig.Builder getEvaluationConfigBuilder()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
-
getEvaluationConfigOrBuilder
public EvaluationConfigOrBuilder getEvaluationConfigOrBuilder()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
- Specified by:
getEvaluationConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
hasHumanAnnotationConfig
public boolean hasHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
- Specified by:
hasHumanAnnotationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the humanAnnotationConfig field is set.
-
getHumanAnnotationConfig
public HumanAnnotationConfig getHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
- Specified by:
getHumanAnnotationConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The humanAnnotationConfig.
-
setHumanAnnotationConfig
public EvaluationJobConfig.Builder setHumanAnnotationConfig(HumanAnnotationConfig value)
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
-
setHumanAnnotationConfig
public EvaluationJobConfig.Builder setHumanAnnotationConfig(HumanAnnotationConfig.Builder builderForValue)
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
-
mergeHumanAnnotationConfig
public EvaluationJobConfig.Builder mergeHumanAnnotationConfig(HumanAnnotationConfig value)
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
-
clearHumanAnnotationConfig
public EvaluationJobConfig.Builder clearHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
-
getHumanAnnotationConfigBuilder
public HumanAnnotationConfig.Builder getHumanAnnotationConfigBuilder()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
-
getHumanAnnotationConfigOrBuilder
public HumanAnnotationConfigOrBuilder getHumanAnnotationConfigOrBuilder()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
- Specified by:
getHumanAnnotationConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
getBigqueryImportKeysCount
public int getBigqueryImportKeysCount()
Description copied from interface:EvaluationJobConfigOrBuilder
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
- Specified by:
getBigqueryImportKeysCount
in interfaceEvaluationJobConfigOrBuilder
-
containsBigqueryImportKeys
public boolean containsBigqueryImportKeys(String key)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
- Specified by:
containsBigqueryImportKeys
in interfaceEvaluationJobConfigOrBuilder
-
getBigqueryImportKeys
@Deprecated public Map<String,String> getBigqueryImportKeys()
Deprecated.UsegetBigqueryImportKeysMap()
instead.- Specified by:
getBigqueryImportKeys
in interfaceEvaluationJobConfigOrBuilder
-
getBigqueryImportKeysMap
public Map<String,String> getBigqueryImportKeysMap()
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
- Specified by:
getBigqueryImportKeysMap
in interfaceEvaluationJobConfigOrBuilder
-
getBigqueryImportKeysOrDefault
public String getBigqueryImportKeysOrDefault(String key, String defaultValue)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
- Specified by:
getBigqueryImportKeysOrDefault
in interfaceEvaluationJobConfigOrBuilder
-
getBigqueryImportKeysOrThrow
public String getBigqueryImportKeysOrThrow(String key)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
- Specified by:
getBigqueryImportKeysOrThrow
in interfaceEvaluationJobConfigOrBuilder
-
clearBigqueryImportKeys
public EvaluationJobConfig.Builder clearBigqueryImportKeys()
-
removeBigqueryImportKeys
public EvaluationJobConfig.Builder removeBigqueryImportKeys(String key)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
getMutableBigqueryImportKeys
@Deprecated public Map<String,String> getMutableBigqueryImportKeys()
Deprecated.Use alternate mutation accessors instead.
-
putBigqueryImportKeys
public EvaluationJobConfig.Builder putBigqueryImportKeys(String key, String value)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
putAllBigqueryImportKeys
public EvaluationJobConfig.Builder putAllBigqueryImportKeys(Map<String,String> values)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
getExampleCount
public int getExampleCount()
Required. The maximum number of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit overrides `example_sample_percentage`: even if the service has not sampled enough predictions to fulfill `example_sample_perecentage` during an interval, it stops sampling predictions when it meets this limit.
int32 example_count = 10;
- Specified by:
getExampleCount
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The exampleCount.
-
setExampleCount
public EvaluationJobConfig.Builder setExampleCount(int value)
Required. The maximum number of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit overrides `example_sample_percentage`: even if the service has not sampled enough predictions to fulfill `example_sample_perecentage` during an interval, it stops sampling predictions when it meets this limit.
int32 example_count = 10;
- Parameters:
value
- The exampleCount to set.- Returns:
- This builder for chaining.
-
clearExampleCount
public EvaluationJobConfig.Builder clearExampleCount()
Required. The maximum number of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit overrides `example_sample_percentage`: even if the service has not sampled enough predictions to fulfill `example_sample_perecentage` during an interval, it stops sampling predictions when it meets this limit.
int32 example_count = 10;
- Returns:
- This builder for chaining.
-
getExampleSamplePercentage
public double getExampleSamplePercentage()
Required. Fraction of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
double example_sample_percentage = 11;
- Specified by:
getExampleSamplePercentage
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The exampleSamplePercentage.
-
setExampleSamplePercentage
public EvaluationJobConfig.Builder setExampleSamplePercentage(double value)
Required. Fraction of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
double example_sample_percentage = 11;
- Parameters:
value
- The exampleSamplePercentage to set.- Returns:
- This builder for chaining.
-
clearExampleSamplePercentage
public EvaluationJobConfig.Builder clearExampleSamplePercentage()
Required. Fraction of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
double example_sample_percentage = 11;
- Returns:
- This builder for chaining.
-
hasEvaluationJobAlertConfig
public boolean hasEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
- Specified by:
hasEvaluationJobAlertConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- Whether the evaluationJobAlertConfig field is set.
-
getEvaluationJobAlertConfig
public EvaluationJobAlertConfig getEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
- Specified by:
getEvaluationJobAlertConfig
in interfaceEvaluationJobConfigOrBuilder
- Returns:
- The evaluationJobAlertConfig.
-
setEvaluationJobAlertConfig
public EvaluationJobConfig.Builder setEvaluationJobAlertConfig(EvaluationJobAlertConfig value)
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
-
setEvaluationJobAlertConfig
public EvaluationJobConfig.Builder setEvaluationJobAlertConfig(EvaluationJobAlertConfig.Builder builderForValue)
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
-
mergeEvaluationJobAlertConfig
public EvaluationJobConfig.Builder mergeEvaluationJobAlertConfig(EvaluationJobAlertConfig value)
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
-
clearEvaluationJobAlertConfig
public EvaluationJobConfig.Builder clearEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
-
getEvaluationJobAlertConfigBuilder
public EvaluationJobAlertConfig.Builder getEvaluationJobAlertConfigBuilder()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
-
getEvaluationJobAlertConfigOrBuilder
public EvaluationJobAlertConfigOrBuilder getEvaluationJobAlertConfigOrBuilder()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
- Specified by:
getEvaluationJobAlertConfigOrBuilder
in interfaceEvaluationJobConfigOrBuilder
-
setUnknownFields
public final EvaluationJobConfig.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
mergeUnknownFields
public final EvaluationJobConfig.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<EvaluationJobConfig.Builder>
-
-