Interface EvaluationJobConfigOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
EvaluationJobConfig
,EvaluationJobConfig.Builder
public interface EvaluationJobConfigOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
hasImageClassificationConfig
boolean hasImageClassificationConfig()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
- Returns:
- Whether the imageClassificationConfig field is set.
-
getImageClassificationConfig
ImageClassificationConfig getImageClassificationConfig()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
- Returns:
- The imageClassificationConfig.
-
getImageClassificationConfigOrBuilder
ImageClassificationConfigOrBuilder getImageClassificationConfigOrBuilder()
Specify this field if your model version performs image classification or general classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
-
hasBoundingPolyConfig
boolean hasBoundingPolyConfig()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
- Returns:
- Whether the boundingPolyConfig field is set.
-
getBoundingPolyConfig
BoundingPolyConfig getBoundingPolyConfig()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
- Returns:
- The boundingPolyConfig.
-
getBoundingPolyConfigOrBuilder
BoundingPolyConfigOrBuilder getBoundingPolyConfigOrBuilder()
Specify this field if your model version performs image object detection (bounding box detection). `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
-
hasTextClassificationConfig
boolean hasTextClassificationConfig()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
- Returns:
- Whether the textClassificationConfig field is set.
-
getTextClassificationConfig
TextClassificationConfig getTextClassificationConfig()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
- Returns:
- The textClassificationConfig.
-
getTextClassificationConfigOrBuilder
TextClassificationConfigOrBuilder getTextClassificationConfigOrBuilder()
Specify this field if your model version performs text classification. `annotationSpecSet` in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. `allowMultiLabel` in this configuration must match `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
-
hasInputConfig
boolean hasInputConfig()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
- Returns:
- Whether the inputConfig field is set.
-
getInputConfig
InputConfig getInputConfig()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
- Returns:
- The inputConfig.
-
getInputConfigOrBuilder
InputConfigOrBuilder getInputConfigOrBuilder()
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). * If your machine learning model performs classification, you must specify `classificationMetadata.isMultiLabel`. * You must specify `bigquerySource` (not `gcsSource`).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
-
hasEvaluationConfig
boolean hasEvaluationConfig()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
- Returns:
- Whether the evaluationConfig field is set.
-
getEvaluationConfig
EvaluationConfig getEvaluationConfig()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
- Returns:
- The evaluationConfig.
-
getEvaluationConfigOrBuilder
EvaluationConfigOrBuilder getEvaluationConfigOrBuilder()
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the `boundingBoxEvaluationOptions` field within this configuration. Otherwise, provide an empty object for this configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
-
hasHumanAnnotationConfig
boolean hasHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
- Returns:
- Whether the humanAnnotationConfig field is set.
-
getHumanAnnotationConfig
HumanAnnotationConfig getHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
- Returns:
- The humanAnnotationConfig.
-
getHumanAnnotationConfigOrBuilder
HumanAnnotationConfigOrBuilder getHumanAnnotationConfigOrBuilder()
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to `true` for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the `instruction` field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
-
getBigqueryImportKeysCount
int getBigqueryImportKeysCount()
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
containsBigqueryImportKeys
boolean containsBigqueryImportKeys(String key)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
getBigqueryImportKeys
@Deprecated Map<String,String> getBigqueryImportKeys()
Deprecated.UsegetBigqueryImportKeysMap()
instead.
-
getBigqueryImportKeysMap
Map<String,String> getBigqueryImportKeysMap()
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
getBigqueryImportKeysOrDefault
String getBigqueryImportKeysOrDefault(String key, String defaultValue)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
getBigqueryImportKeysOrThrow
String getBigqueryImportKeysOrThrow(String key)
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * `data_json_key`: the data key for prediction input. You must provide either this key or `reference_json_key`. * `reference_json_key`: the data reference key for prediction input. You must provide either this key or `data_json_key`. * `label_json_key`: the label key for prediction output. Required. * `label_score_json_key`: the score key for prediction output. Required. * `bounding_box_json_key`: the bounding box key for prediction output. Required if your model version perform image object detection. Learn [how to configure prediction keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map<string, string> bigquery_import_keys = 9;
-
getExampleCount
int getExampleCount()
Required. The maximum number of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit overrides `example_sample_percentage`: even if the service has not sampled enough predictions to fulfill `example_sample_perecentage` during an interval, it stops sampling predictions when it meets this limit.
int32 example_count = 10;
- Returns:
- The exampleCount.
-
getExampleSamplePercentage
double getExampleSamplePercentage()
Required. Fraction of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
double example_sample_percentage = 11;
- Returns:
- The exampleSamplePercentage.
-
hasEvaluationJobAlertConfig
boolean hasEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
- Returns:
- Whether the evaluationJobAlertConfig field is set.
-
getEvaluationJobAlertConfig
EvaluationJobAlertConfig getEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
- Returns:
- The evaluationJobAlertConfig.
-
getEvaluationJobAlertConfigOrBuilder
EvaluationJobAlertConfigOrBuilder getEvaluationJobAlertConfigOrBuilder()
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
-
getHumanAnnotationRequestConfigCase
EvaluationJobConfig.HumanAnnotationRequestConfigCase getHumanAnnotationRequestConfigCase()
-
-