Interface EvaluationJobConfigOrBuilder

  • All Superinterfaces:
    com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
    All Known Implementing Classes:
    EvaluationJobConfig, EvaluationJobConfig.Builder

    public interface EvaluationJobConfigOrBuilder
    extends com.google.protobuf.MessageOrBuilder
    • Method Detail

      • hasImageClassificationConfig

        boolean hasImageClassificationConfig()
         Specify this field if your model version performs image classification or
         general classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
        Returns:
        Whether the imageClassificationConfig field is set.
      • getImageClassificationConfig

        ImageClassificationConfig getImageClassificationConfig()
         Specify this field if your model version performs image classification or
         general classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
        Returns:
        The imageClassificationConfig.
      • getImageClassificationConfigOrBuilder

        ImageClassificationConfigOrBuilder getImageClassificationConfigOrBuilder()
         Specify this field if your model version performs image classification or
         general classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
      • hasBoundingPolyConfig

        boolean hasBoundingPolyConfig()
         Specify this field if your model version performs image object detection
         (bounding box detection).
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         
        .google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
        Returns:
        Whether the boundingPolyConfig field is set.
      • getBoundingPolyConfig

        BoundingPolyConfig getBoundingPolyConfig()
         Specify this field if your model version performs image object detection
         (bounding box detection).
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         
        .google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
        Returns:
        The boundingPolyConfig.
      • getBoundingPolyConfigOrBuilder

        BoundingPolyConfigOrBuilder getBoundingPolyConfigOrBuilder()
         Specify this field if your model version performs image object detection
         (bounding box detection).
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         
        .google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
      • hasTextClassificationConfig

        boolean hasTextClassificationConfig()
         Specify this field if your model version performs text classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
        Returns:
        Whether the textClassificationConfig field is set.
      • getTextClassificationConfig

        TextClassificationConfig getTextClassificationConfig()
         Specify this field if your model version performs text classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
        Returns:
        The textClassificationConfig.
      • getTextClassificationConfigOrBuilder

        TextClassificationConfigOrBuilder getTextClassificationConfigOrBuilder()
         Specify this field if your model version performs text classification.
        
         `annotationSpecSet` in this configuration must match
         [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
         `allowMultiLabel` in this configuration must match
         `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
         
        .google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
      • hasInputConfig

        boolean hasInputConfig()
         Rquired. Details for the sampled prediction input. Within this
         configuration, there are requirements for several fields:
        
         * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
         * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
           `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
           or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
         * If your machine learning model performs classification, you must specify
           `classificationMetadata.isMultiLabel`.
         * You must specify `bigquerySource` (not `gcsSource`).
         
        .google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
        Returns:
        Whether the inputConfig field is set.
      • getInputConfig

        InputConfig getInputConfig()
         Rquired. Details for the sampled prediction input. Within this
         configuration, there are requirements for several fields:
        
         * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
         * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
           `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
           or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
         * If your machine learning model performs classification, you must specify
           `classificationMetadata.isMultiLabel`.
         * You must specify `bigquerySource` (not `gcsSource`).
         
        .google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
        Returns:
        The inputConfig.
      • getInputConfigOrBuilder

        InputConfigOrBuilder getInputConfigOrBuilder()
         Rquired. Details for the sampled prediction input. Within this
         configuration, there are requirements for several fields:
        
         * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
         * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
           `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
           or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
         * If your machine learning model performs classification, you must specify
           `classificationMetadata.isMultiLabel`.
         * You must specify `bigquerySource` (not `gcsSource`).
         
        .google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
      • hasEvaluationConfig

        boolean hasEvaluationConfig()
         Required. Details for calculating evaluation metrics and creating
         [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
         detection, you must specify the `boundingBoxEvaluationOptions` field within
         this configuration. Otherwise, provide an empty object for this
         configuration.
         
        .google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
        Returns:
        Whether the evaluationConfig field is set.
      • getEvaluationConfig

        EvaluationConfig getEvaluationConfig()
         Required. Details for calculating evaluation metrics and creating
         [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
         detection, you must specify the `boundingBoxEvaluationOptions` field within
         this configuration. Otherwise, provide an empty object for this
         configuration.
         
        .google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
        Returns:
        The evaluationConfig.
      • getEvaluationConfigOrBuilder

        EvaluationConfigOrBuilder getEvaluationConfigOrBuilder()
         Required. Details for calculating evaluation metrics and creating
         [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
         detection, you must specify the `boundingBoxEvaluationOptions` field within
         this configuration. Otherwise, provide an empty object for this
         configuration.
         
        .google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
      • hasHumanAnnotationConfig

        boolean hasHumanAnnotationConfig()
         Optional. Details for human annotation of your data. If you set
         [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
         `true` for this evaluation job, then you must specify this field. If you
         plan to provide your own ground truth labels, then omit this field.
        
         Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
         specify this field. Provide the name of the instruction resource in the
         `instruction` field within this configuration.
         
        .google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
        Returns:
        Whether the humanAnnotationConfig field is set.
      • getHumanAnnotationConfig

        HumanAnnotationConfig getHumanAnnotationConfig()
         Optional. Details for human annotation of your data. If you set
         [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
         `true` for this evaluation job, then you must specify this field. If you
         plan to provide your own ground truth labels, then omit this field.
        
         Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
         specify this field. Provide the name of the instruction resource in the
         `instruction` field within this configuration.
         
        .google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
        Returns:
        The humanAnnotationConfig.
      • getHumanAnnotationConfigOrBuilder

        HumanAnnotationConfigOrBuilder getHumanAnnotationConfigOrBuilder()
         Optional. Details for human annotation of your data. If you set
         [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
         `true` for this evaluation job, then you must specify this field. If you
         plan to provide your own ground truth labels, then omit this field.
        
         Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
         specify this field. Provide the name of the instruction resource in the
         `instruction` field within this configuration.
         
        .google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
      • getBigqueryImportKeysCount

        int getBigqueryImportKeysCount()
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
      • containsBigqueryImportKeys

        boolean containsBigqueryImportKeys​(String key)
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
      • getBigqueryImportKeysMap

        Map<String,​String> getBigqueryImportKeysMap()
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
      • getBigqueryImportKeysOrDefault

        String getBigqueryImportKeysOrDefault​(String key,
                                              String defaultValue)
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
      • getBigqueryImportKeysOrThrow

        String getBigqueryImportKeysOrThrow​(String key)
         Required. Prediction keys that tell Data Labeling Service where to find the
         data for evaluation in your BigQuery table. When the service samples
         prediction input and output from your model version and saves it to
         BigQuery, the data gets stored as JSON strings in the BigQuery table. These
         keys tell Data Labeling Service how to parse the JSON.
        
         You can provide the following entries in this field:
        
         * `data_json_key`: the data key for prediction input. You must provide
           either this key or `reference_json_key`.
         * `reference_json_key`: the data reference key for prediction input. You
           must provide either this key or `data_json_key`.
         * `label_json_key`: the label key for prediction output. Required.
         * `label_score_json_key`: the score key for prediction output. Required.
         * `bounding_box_json_key`: the bounding box key for prediction output.
           Required if your model version perform image object detection.
        
         Learn [how to configure prediction
         keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
         
        map<string, string> bigquery_import_keys = 9;
      • getExampleCount

        int getExampleCount()
         Required. The maximum number of predictions to sample and save to BigQuery
         during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit
         overrides `example_sample_percentage`: even if the service has not sampled
         enough predictions to fulfill `example_sample_perecentage` during an
         interval, it stops sampling predictions when it meets this limit.
         
        int32 example_count = 10;
        Returns:
        The exampleCount.
      • getExampleSamplePercentage

        double getExampleSamplePercentage()
         Required. Fraction of predictions to sample and save to BigQuery during
         each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means
         10% of predictions served by your model version get saved to BigQuery.
         
        double example_sample_percentage = 11;
        Returns:
        The exampleSamplePercentage.
      • hasEvaluationJobAlertConfig

        boolean hasEvaluationJobAlertConfig()
         Optional. Configuration details for evaluation job alerts. Specify this
         field if you want to receive email alerts if the evaluation job finds that
         your predictions have low mean average precision during a run.
         
        .google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
        Returns:
        Whether the evaluationJobAlertConfig field is set.
      • getEvaluationJobAlertConfig

        EvaluationJobAlertConfig getEvaluationJobAlertConfig()
         Optional. Configuration details for evaluation job alerts. Specify this
         field if you want to receive email alerts if the evaluation job finds that
         your predictions have low mean average precision during a run.
         
        .google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
        Returns:
        The evaluationJobAlertConfig.
      • getEvaluationJobAlertConfigOrBuilder

        EvaluationJobAlertConfigOrBuilder getEvaluationJobAlertConfigOrBuilder()
         Optional. Configuration details for evaluation job alerts. Specify this
         field if you want to receive email alerts if the evaluation job finds that
         your predictions have low mean average precision during a run.
         
        .google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;