Package com.google.cloud.automl.v1beta1
Class TablesModelMetadata.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
- com.google.cloud.automl.v1beta1.TablesModelMetadata.Builder
-
- All Implemented Interfaces:
TablesModelMetadataOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- TablesModelMetadata
public static final class TablesModelMetadata.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder> implements TablesModelMetadataOrBuilder
Model metadata specific to AutoML Tables.
Protobuf typegoogle.cloud.automl.v1beta1.TablesModelMetadata
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description TablesModelMetadata.Builder
addAllInputFeatureColumnSpecs(Iterable<? extends ColumnSpec> values)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
addAllTablesModelColumnInfo(Iterable<? extends TablesModelColumnInfo> values)
Output only.TablesModelMetadata.Builder
addInputFeatureColumnSpecs(int index, ColumnSpec value)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
addInputFeatureColumnSpecs(int index, ColumnSpec.Builder builderForValue)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
addInputFeatureColumnSpecs(ColumnSpec value)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
addInputFeatureColumnSpecs(ColumnSpec.Builder builderForValue)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.ColumnSpec.Builder
addInputFeatureColumnSpecsBuilder()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.ColumnSpec.Builder
addInputFeatureColumnSpecsBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
TablesModelMetadata.Builder
addTablesModelColumnInfo(int index, TablesModelColumnInfo value)
Output only.TablesModelMetadata.Builder
addTablesModelColumnInfo(int index, TablesModelColumnInfo.Builder builderForValue)
Output only.TablesModelMetadata.Builder
addTablesModelColumnInfo(TablesModelColumnInfo value)
Output only.TablesModelMetadata.Builder
addTablesModelColumnInfo(TablesModelColumnInfo.Builder builderForValue)
Output only.TablesModelColumnInfo.Builder
addTablesModelColumnInfoBuilder()
Output only.TablesModelColumnInfo.Builder
addTablesModelColumnInfoBuilder(int index)
Output only.TablesModelMetadata
build()
TablesModelMetadata
buildPartial()
TablesModelMetadata.Builder
clear()
TablesModelMetadata.Builder
clearAdditionalOptimizationObjectiveConfig()
TablesModelMetadata.Builder
clearDisableEarlyStopping()
Use the entire training budget.TablesModelMetadata.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
TablesModelMetadata.Builder
clearInputFeatureColumnSpecs()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
TablesModelMetadata.Builder
clearOptimizationObjective()
Objective function the model is optimizing towards.TablesModelMetadata.Builder
clearOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".TablesModelMetadata.Builder
clearOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".TablesModelMetadata.Builder
clearTablesModelColumnInfo()
Output only.TablesModelMetadata.Builder
clearTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting.TablesModelMetadata.Builder
clearTrainBudgetMilliNodeHours()
Required.TablesModelMetadata.Builder
clearTrainCostMilliNodeHours()
Output only.TablesModelMetadata.Builder
clone()
TablesModelMetadata.AdditionalOptimizationObjectiveConfigCase
getAdditionalOptimizationObjectiveConfigCase()
TablesModelMetadata
getDefaultInstanceForType()
static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
com.google.protobuf.Descriptors.Descriptor
getDescriptorForType()
boolean
getDisableEarlyStopping()
Use the entire training budget.ColumnSpec
getInputFeatureColumnSpecs(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.ColumnSpec.Builder
getInputFeatureColumnSpecsBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.List<ColumnSpec.Builder>
getInputFeatureColumnSpecsBuilderList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.int
getInputFeatureColumnSpecsCount()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.List<ColumnSpec>
getInputFeatureColumnSpecsList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.ColumnSpecOrBuilder
getInputFeatureColumnSpecsOrBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.List<? extends ColumnSpecOrBuilder>
getInputFeatureColumnSpecsOrBuilderList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.String
getOptimizationObjective()
Objective function the model is optimizing towards.com.google.protobuf.ByteString
getOptimizationObjectiveBytes()
Objective function the model is optimizing towards.float
getOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".float
getOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".TablesModelColumnInfo
getTablesModelColumnInfo(int index)
Output only.TablesModelColumnInfo.Builder
getTablesModelColumnInfoBuilder(int index)
Output only.List<TablesModelColumnInfo.Builder>
getTablesModelColumnInfoBuilderList()
Output only.int
getTablesModelColumnInfoCount()
Output only.List<TablesModelColumnInfo>
getTablesModelColumnInfoList()
Output only.TablesModelColumnInfoOrBuilder
getTablesModelColumnInfoOrBuilder(int index)
Output only.List<? extends TablesModelColumnInfoOrBuilder>
getTablesModelColumnInfoOrBuilderList()
Output only.ColumnSpec
getTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting.ColumnSpec.Builder
getTargetColumnSpecBuilder()
Column spec of the dataset's primary table's column the model is predicting.ColumnSpecOrBuilder
getTargetColumnSpecOrBuilder()
Column spec of the dataset's primary table's column the model is predicting.long
getTrainBudgetMilliNodeHours()
Required.long
getTrainCostMilliNodeHours()
Output only.boolean
hasOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".boolean
hasOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".boolean
hasTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
boolean
isInitialized()
TablesModelMetadata.Builder
mergeFrom(TablesModelMetadata other)
TablesModelMetadata.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
TablesModelMetadata.Builder
mergeFrom(com.google.protobuf.Message other)
TablesModelMetadata.Builder
mergeTargetColumnSpec(ColumnSpec value)
Column spec of the dataset's primary table's column the model is predicting.TablesModelMetadata.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
TablesModelMetadata.Builder
removeInputFeatureColumnSpecs(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
removeTablesModelColumnInfo(int index)
Output only.TablesModelMetadata.Builder
setDisableEarlyStopping(boolean value)
Use the entire training budget.TablesModelMetadata.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
TablesModelMetadata.Builder
setInputFeatureColumnSpecs(int index, ColumnSpec value)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
setInputFeatureColumnSpecs(int index, ColumnSpec.Builder builderForValue)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.TablesModelMetadata.Builder
setOptimizationObjective(String value)
Objective function the model is optimizing towards.TablesModelMetadata.Builder
setOptimizationObjectiveBytes(com.google.protobuf.ByteString value)
Objective function the model is optimizing towards.TablesModelMetadata.Builder
setOptimizationObjectivePrecisionValue(float value)
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".TablesModelMetadata.Builder
setOptimizationObjectiveRecallValue(float value)
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".TablesModelMetadata.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
TablesModelMetadata.Builder
setTablesModelColumnInfo(int index, TablesModelColumnInfo value)
Output only.TablesModelMetadata.Builder
setTablesModelColumnInfo(int index, TablesModelColumnInfo.Builder builderForValue)
Output only.TablesModelMetadata.Builder
setTargetColumnSpec(ColumnSpec value)
Column spec of the dataset's primary table's column the model is predicting.TablesModelMetadata.Builder
setTargetColumnSpec(ColumnSpec.Builder builderForValue)
Column spec of the dataset's primary table's column the model is predicting.TablesModelMetadata.Builder
setTrainBudgetMilliNodeHours(long value)
Required.TablesModelMetadata.Builder
setTrainCostMilliNodeHours(long value)
Output only.TablesModelMetadata.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
clear
public TablesModelMetadata.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
getDefaultInstanceForType
public TablesModelMetadata getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public TablesModelMetadata build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public TablesModelMetadata buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public TablesModelMetadata.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
setField
public TablesModelMetadata.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
clearField
public TablesModelMetadata.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
clearOneof
public TablesModelMetadata.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
setRepeatedField
public TablesModelMetadata.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
addRepeatedField
public TablesModelMetadata.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
mergeFrom
public TablesModelMetadata.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<TablesModelMetadata.Builder>
-
mergeFrom
public TablesModelMetadata.Builder mergeFrom(TablesModelMetadata other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
mergeFrom
public TablesModelMetadata.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<TablesModelMetadata.Builder>
- Throws:
IOException
-
getAdditionalOptimizationObjectiveConfigCase
public TablesModelMetadata.AdditionalOptimizationObjectiveConfigCase getAdditionalOptimizationObjectiveConfigCase()
- Specified by:
getAdditionalOptimizationObjectiveConfigCase
in interfaceTablesModelMetadataOrBuilder
-
clearAdditionalOptimizationObjectiveConfig
public TablesModelMetadata.Builder clearAdditionalOptimizationObjectiveConfig()
-
hasOptimizationObjectiveRecallValue
public boolean hasOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
- Specified by:
hasOptimizationObjectiveRecallValue
in interfaceTablesModelMetadataOrBuilder
- Returns:
- Whether the optimizationObjectiveRecallValue field is set.
-
getOptimizationObjectiveRecallValue
public float getOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
- Specified by:
getOptimizationObjectiveRecallValue
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The optimizationObjectiveRecallValue.
-
setOptimizationObjectiveRecallValue
public TablesModelMetadata.Builder setOptimizationObjectiveRecallValue(float value)
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
- Parameters:
value
- The optimizationObjectiveRecallValue to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjectiveRecallValue
public TablesModelMetadata.Builder clearOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
- Returns:
- This builder for chaining.
-
hasOptimizationObjectivePrecisionValue
public boolean hasOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
- Specified by:
hasOptimizationObjectivePrecisionValue
in interfaceTablesModelMetadataOrBuilder
- Returns:
- Whether the optimizationObjectivePrecisionValue field is set.
-
getOptimizationObjectivePrecisionValue
public float getOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
- Specified by:
getOptimizationObjectivePrecisionValue
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The optimizationObjectivePrecisionValue.
-
setOptimizationObjectivePrecisionValue
public TablesModelMetadata.Builder setOptimizationObjectivePrecisionValue(float value)
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
- Parameters:
value
- The optimizationObjectivePrecisionValue to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjectivePrecisionValue
public TablesModelMetadata.Builder clearOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
- Returns:
- This builder for chaining.
-
hasTargetColumnSpec
public boolean hasTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
- Specified by:
hasTargetColumnSpec
in interfaceTablesModelMetadataOrBuilder
- Returns:
- Whether the targetColumnSpec field is set.
-
getTargetColumnSpec
public ColumnSpec getTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
- Specified by:
getTargetColumnSpec
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The targetColumnSpec.
-
setTargetColumnSpec
public TablesModelMetadata.Builder setTargetColumnSpec(ColumnSpec value)
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
-
setTargetColumnSpec
public TablesModelMetadata.Builder setTargetColumnSpec(ColumnSpec.Builder builderForValue)
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
-
mergeTargetColumnSpec
public TablesModelMetadata.Builder mergeTargetColumnSpec(ColumnSpec value)
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
-
clearTargetColumnSpec
public TablesModelMetadata.Builder clearTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
-
getTargetColumnSpecBuilder
public ColumnSpec.Builder getTargetColumnSpecBuilder()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
-
getTargetColumnSpecOrBuilder
public ColumnSpecOrBuilder getTargetColumnSpecOrBuilder()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
- Specified by:
getTargetColumnSpecOrBuilder
in interfaceTablesModelMetadataOrBuilder
-
getInputFeatureColumnSpecsList
public List<ColumnSpec> getInputFeatureColumnSpecsList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
- Specified by:
getInputFeatureColumnSpecsList
in interfaceTablesModelMetadataOrBuilder
-
getInputFeatureColumnSpecsCount
public int getInputFeatureColumnSpecsCount()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
- Specified by:
getInputFeatureColumnSpecsCount
in interfaceTablesModelMetadataOrBuilder
-
getInputFeatureColumnSpecs
public ColumnSpec getInputFeatureColumnSpecs(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
- Specified by:
getInputFeatureColumnSpecs
in interfaceTablesModelMetadataOrBuilder
-
setInputFeatureColumnSpecs
public TablesModelMetadata.Builder setInputFeatureColumnSpecs(int index, ColumnSpec value)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
setInputFeatureColumnSpecs
public TablesModelMetadata.Builder setInputFeatureColumnSpecs(int index, ColumnSpec.Builder builderForValue)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
addInputFeatureColumnSpecs
public TablesModelMetadata.Builder addInputFeatureColumnSpecs(ColumnSpec value)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
addInputFeatureColumnSpecs
public TablesModelMetadata.Builder addInputFeatureColumnSpecs(int index, ColumnSpec value)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
addInputFeatureColumnSpecs
public TablesModelMetadata.Builder addInputFeatureColumnSpecs(ColumnSpec.Builder builderForValue)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
addInputFeatureColumnSpecs
public TablesModelMetadata.Builder addInputFeatureColumnSpecs(int index, ColumnSpec.Builder builderForValue)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
addAllInputFeatureColumnSpecs
public TablesModelMetadata.Builder addAllInputFeatureColumnSpecs(Iterable<? extends ColumnSpec> values)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
clearInputFeatureColumnSpecs
public TablesModelMetadata.Builder clearInputFeatureColumnSpecs()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
removeInputFeatureColumnSpecs
public TablesModelMetadata.Builder removeInputFeatureColumnSpecs(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecsBuilder
public ColumnSpec.Builder getInputFeatureColumnSpecsBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecsOrBuilder
public ColumnSpecOrBuilder getInputFeatureColumnSpecsOrBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
- Specified by:
getInputFeatureColumnSpecsOrBuilder
in interfaceTablesModelMetadataOrBuilder
-
getInputFeatureColumnSpecsOrBuilderList
public List<? extends ColumnSpecOrBuilder> getInputFeatureColumnSpecsOrBuilderList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
- Specified by:
getInputFeatureColumnSpecsOrBuilderList
in interfaceTablesModelMetadataOrBuilder
-
addInputFeatureColumnSpecsBuilder
public ColumnSpec.Builder addInputFeatureColumnSpecsBuilder()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
addInputFeatureColumnSpecsBuilder
public ColumnSpec.Builder addInputFeatureColumnSpecsBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecsBuilderList
public List<ColumnSpec.Builder> getInputFeatureColumnSpecsBuilderList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getOptimizationObjective
public String getOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Specified by:
getOptimizationObjective
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The optimizationObjective.
-
getOptimizationObjectiveBytes
public com.google.protobuf.ByteString getOptimizationObjectiveBytes()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Specified by:
getOptimizationObjectiveBytes
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The bytes for optimizationObjective.
-
setOptimizationObjective
public TablesModelMetadata.Builder setOptimizationObjective(String value)
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Parameters:
value
- The optimizationObjective to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjective
public TablesModelMetadata.Builder clearOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Returns:
- This builder for chaining.
-
setOptimizationObjectiveBytes
public TablesModelMetadata.Builder setOptimizationObjectiveBytes(com.google.protobuf.ByteString value)
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Parameters:
value
- The bytes for optimizationObjective to set.- Returns:
- This builder for chaining.
-
getTablesModelColumnInfoList
public List<TablesModelColumnInfo> getTablesModelColumnInfoList()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
- Specified by:
getTablesModelColumnInfoList
in interfaceTablesModelMetadataOrBuilder
-
getTablesModelColumnInfoCount
public int getTablesModelColumnInfoCount()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
- Specified by:
getTablesModelColumnInfoCount
in interfaceTablesModelMetadataOrBuilder
-
getTablesModelColumnInfo
public TablesModelColumnInfo getTablesModelColumnInfo(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
- Specified by:
getTablesModelColumnInfo
in interfaceTablesModelMetadataOrBuilder
-
setTablesModelColumnInfo
public TablesModelMetadata.Builder setTablesModelColumnInfo(int index, TablesModelColumnInfo value)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
setTablesModelColumnInfo
public TablesModelMetadata.Builder setTablesModelColumnInfo(int index, TablesModelColumnInfo.Builder builderForValue)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
addTablesModelColumnInfo
public TablesModelMetadata.Builder addTablesModelColumnInfo(TablesModelColumnInfo value)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
addTablesModelColumnInfo
public TablesModelMetadata.Builder addTablesModelColumnInfo(int index, TablesModelColumnInfo value)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
addTablesModelColumnInfo
public TablesModelMetadata.Builder addTablesModelColumnInfo(TablesModelColumnInfo.Builder builderForValue)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
addTablesModelColumnInfo
public TablesModelMetadata.Builder addTablesModelColumnInfo(int index, TablesModelColumnInfo.Builder builderForValue)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
addAllTablesModelColumnInfo
public TablesModelMetadata.Builder addAllTablesModelColumnInfo(Iterable<? extends TablesModelColumnInfo> values)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
clearTablesModelColumnInfo
public TablesModelMetadata.Builder clearTablesModelColumnInfo()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
removeTablesModelColumnInfo
public TablesModelMetadata.Builder removeTablesModelColumnInfo(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfoBuilder
public TablesModelColumnInfo.Builder getTablesModelColumnInfoBuilder(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfoOrBuilder
public TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
- Specified by:
getTablesModelColumnInfoOrBuilder
in interfaceTablesModelMetadataOrBuilder
-
getTablesModelColumnInfoOrBuilderList
public List<? extends TablesModelColumnInfoOrBuilder> getTablesModelColumnInfoOrBuilderList()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
- Specified by:
getTablesModelColumnInfoOrBuilderList
in interfaceTablesModelMetadataOrBuilder
-
addTablesModelColumnInfoBuilder
public TablesModelColumnInfo.Builder addTablesModelColumnInfoBuilder()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
addTablesModelColumnInfoBuilder
public TablesModelColumnInfo.Builder addTablesModelColumnInfoBuilder(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfoBuilderList
public List<TablesModelColumnInfo.Builder> getTablesModelColumnInfoBuilderList()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTrainBudgetMilliNodeHours
public long getTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Specified by:
getTrainBudgetMilliNodeHours
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The trainBudgetMilliNodeHours.
-
setTrainBudgetMilliNodeHours
public TablesModelMetadata.Builder setTrainBudgetMilliNodeHours(long value)
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Parameters:
value
- The trainBudgetMilliNodeHours to set.- Returns:
- This builder for chaining.
-
clearTrainBudgetMilliNodeHours
public TablesModelMetadata.Builder clearTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Returns:
- This builder for chaining.
-
getTrainCostMilliNodeHours
public long getTrainCostMilliNodeHours()
Output only. The actual training cost of the model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.
int64 train_cost_milli_node_hours = 7;
- Specified by:
getTrainCostMilliNodeHours
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The trainCostMilliNodeHours.
-
setTrainCostMilliNodeHours
public TablesModelMetadata.Builder setTrainCostMilliNodeHours(long value)
Output only. The actual training cost of the model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.
int64 train_cost_milli_node_hours = 7;
- Parameters:
value
- The trainCostMilliNodeHours to set.- Returns:
- This builder for chaining.
-
clearTrainCostMilliNodeHours
public TablesModelMetadata.Builder clearTrainCostMilliNodeHours()
Output only. The actual training cost of the model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.
int64 train_cost_milli_node_hours = 7;
- Returns:
- This builder for chaining.
-
getDisableEarlyStopping
public boolean getDisableEarlyStopping()
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 12;
- Specified by:
getDisableEarlyStopping
in interfaceTablesModelMetadataOrBuilder
- Returns:
- The disableEarlyStopping.
-
setDisableEarlyStopping
public TablesModelMetadata.Builder setDisableEarlyStopping(boolean value)
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 12;
- Parameters:
value
- The disableEarlyStopping to set.- Returns:
- This builder for chaining.
-
clearDisableEarlyStopping
public TablesModelMetadata.Builder clearDisableEarlyStopping()
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 12;
- Returns:
- This builder for chaining.
-
setUnknownFields
public final TablesModelMetadata.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
mergeUnknownFields
public final TablesModelMetadata.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<TablesModelMetadata.Builder>
-
-