Package com.google.cloud.automl.v1beta1
Interface TablesModelMetadataOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
TablesModelMetadata
,TablesModelMetadata.Builder
public interface TablesModelMetadataOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description TablesModelMetadata.AdditionalOptimizationObjectiveConfigCase
getAdditionalOptimizationObjectiveConfigCase()
boolean
getDisableEarlyStopping()
Use the entire training budget.ColumnSpec
getInputFeatureColumnSpecs(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.int
getInputFeatureColumnSpecsCount()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.List<ColumnSpec>
getInputFeatureColumnSpecsList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.ColumnSpecOrBuilder
getInputFeatureColumnSpecsOrBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.List<? extends ColumnSpecOrBuilder>
getInputFeatureColumnSpecsOrBuilderList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions.String
getOptimizationObjective()
Objective function the model is optimizing towards.com.google.protobuf.ByteString
getOptimizationObjectiveBytes()
Objective function the model is optimizing towards.float
getOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".float
getOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".TablesModelColumnInfo
getTablesModelColumnInfo(int index)
Output only.int
getTablesModelColumnInfoCount()
Output only.List<TablesModelColumnInfo>
getTablesModelColumnInfoList()
Output only.TablesModelColumnInfoOrBuilder
getTablesModelColumnInfoOrBuilder(int index)
Output only.List<? extends TablesModelColumnInfoOrBuilder>
getTablesModelColumnInfoOrBuilderList()
Output only.ColumnSpec
getTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting.ColumnSpecOrBuilder
getTargetColumnSpecOrBuilder()
Column spec of the dataset's primary table's column the model is predicting.long
getTrainBudgetMilliNodeHours()
Required.long
getTrainCostMilliNodeHours()
Output only.boolean
hasOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".boolean
hasOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".boolean
hasTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
hasOptimizationObjectiveRecallValue
boolean hasOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
- Returns:
- Whether the optimizationObjectiveRecallValue field is set.
-
getOptimizationObjectiveRecallValue
float getOptimizationObjectiveRecallValue()
Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
- Returns:
- The optimizationObjectiveRecallValue.
-
hasOptimizationObjectivePrecisionValue
boolean hasOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
- Returns:
- Whether the optimizationObjectivePrecisionValue field is set.
-
getOptimizationObjectivePrecisionValue
float getOptimizationObjectivePrecisionValue()
Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
- Returns:
- The optimizationObjectivePrecisionValue.
-
hasTargetColumnSpec
boolean hasTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
- Returns:
- Whether the targetColumnSpec field is set.
-
getTargetColumnSpec
ColumnSpec getTargetColumnSpec()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
- Returns:
- The targetColumnSpec.
-
getTargetColumnSpecOrBuilder
ColumnSpecOrBuilder getTargetColumnSpecOrBuilder()
Column spec of the dataset's primary table's column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it's not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
-
getInputFeatureColumnSpecsList
List<ColumnSpec> getInputFeatureColumnSpecsList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecs
ColumnSpec getInputFeatureColumnSpecs(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecsCount
int getInputFeatureColumnSpecsCount()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecsOrBuilderList
List<? extends ColumnSpecOrBuilder> getInputFeatureColumnSpecsOrBuilderList()
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getInputFeatureColumnSpecsOrBuilder
ColumnSpecOrBuilder getInputFeatureColumnSpecsOrBuilder(int index)
Column specs of the dataset's primary table's columns, on which the model is trained and which are used as the input for predictions. The [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset's state upon model creation, [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here. Only 3 fields are used: * name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table's columns (except the ones listed above) are used for the training and prediction input. * display_name - Output only. * data_type - Output only.
repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
-
getOptimizationObjective
String getOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Returns:
- The optimizationObjective.
-
getOptimizationObjectiveBytes
com.google.protobuf.ByteString getOptimizationObjectiveBytes()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. CLASSIFICATION_BINARY: "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "MINIMIZE_LOG_LOSS" - Minimize log loss. "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified recall value. "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified precision value. CLASSIFICATION_MULTI_CLASS : "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. REGRESSION: "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Returns:
- The bytes for optimizationObjective.
-
getTablesModelColumnInfoList
List<TablesModelColumnInfo> getTablesModelColumnInfoList()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfo
TablesModelColumnInfo getTablesModelColumnInfo(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfoCount
int getTablesModelColumnInfoCount()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfoOrBuilderList
List<? extends TablesModelColumnInfoOrBuilder> getTablesModelColumnInfoOrBuilderList()
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTablesModelColumnInfoOrBuilder
TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(int index)
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
-
getTrainBudgetMilliNodeHours
long getTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Returns:
- The trainBudgetMilliNodeHours.
-
getTrainCostMilliNodeHours
long getTrainCostMilliNodeHours()
Output only. The actual training cost of the model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.
int64 train_cost_milli_node_hours = 7;
- Returns:
- The trainCostMilliNodeHours.
-
getDisableEarlyStopping
boolean getDisableEarlyStopping()
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 12;
- Returns:
- The disableEarlyStopping.
-
getAdditionalOptimizationObjectiveConfigCase
TablesModelMetadata.AdditionalOptimizationObjectiveConfigCase getAdditionalOptimizationObjectiveConfigCase()
-
-