Interface TablesModelMetadataOrBuilder

  • All Superinterfaces:
    com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
    All Known Implementing Classes:
    TablesModelMetadata, TablesModelMetadata.Builder

    public interface TablesModelMetadataOrBuilder
    extends com.google.protobuf.MessageOrBuilder
    • Method Detail

      • hasOptimizationObjectiveRecallValue

        boolean hasOptimizationObjectiveRecallValue()
         Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_recall_value = 17;
        Returns:
        Whether the optimizationObjectiveRecallValue field is set.
      • getOptimizationObjectiveRecallValue

        float getOptimizationObjectiveRecallValue()
         Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_recall_value = 17;
        Returns:
        The optimizationObjectiveRecallValue.
      • hasOptimizationObjectivePrecisionValue

        boolean hasOptimizationObjectivePrecisionValue()
         Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_precision_value = 18;
        Returns:
        Whether the optimizationObjectivePrecisionValue field is set.
      • getOptimizationObjectivePrecisionValue

        float getOptimizationObjectivePrecisionValue()
         Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_precision_value = 18;
        Returns:
        The optimizationObjectivePrecisionValue.
      • hasTargetColumnSpec

        boolean hasTargetColumnSpec()
         Column spec of the dataset's primary table's column the model is
         predicting. Snapshotted when model creation started.
         Only 3 fields are used:
         name - May be set on CreateModel, if it's not then the ColumnSpec
                corresponding to the current target_column_spec_id of the dataset
                the model is trained from is used.
                If neither is set, CreateModel will error.
         display_name - Output only.
         data_type - Output only.
         
        .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
        Returns:
        Whether the targetColumnSpec field is set.
      • getTargetColumnSpec

        ColumnSpec getTargetColumnSpec()
         Column spec of the dataset's primary table's column the model is
         predicting. Snapshotted when model creation started.
         Only 3 fields are used:
         name - May be set on CreateModel, if it's not then the ColumnSpec
                corresponding to the current target_column_spec_id of the dataset
                the model is trained from is used.
                If neither is set, CreateModel will error.
         display_name - Output only.
         data_type - Output only.
         
        .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
        Returns:
        The targetColumnSpec.
      • getTargetColumnSpecOrBuilder

        ColumnSpecOrBuilder getTargetColumnSpecOrBuilder()
         Column spec of the dataset's primary table's column the model is
         predicting. Snapshotted when model creation started.
         Only 3 fields are used:
         name - May be set on CreateModel, if it's not then the ColumnSpec
                corresponding to the current target_column_spec_id of the dataset
                the model is trained from is used.
                If neither is set, CreateModel will error.
         display_name - Output only.
         data_type - Output only.
         
        .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;
      • getInputFeatureColumnSpecsList

        List<ColumnSpec> getInputFeatureColumnSpecsList()
         Column specs of the dataset's primary table's columns, on which
         the model is trained and which are used as the input for predictions.
         The
        
         [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
         as well as, according to dataset's state upon model creation,
        
         [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
         and
        
         [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
         must never be included here.
        
         Only 3 fields are used:
        
         * name - May be set on CreateModel, if set only the columns specified are
           used, otherwise all primary table's columns (except the ones listed
           above) are used for the training and prediction input.
        
         * display_name - Output only.
        
         * data_type - Output only.
         
        repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
      • getInputFeatureColumnSpecs

        ColumnSpec getInputFeatureColumnSpecs​(int index)
         Column specs of the dataset's primary table's columns, on which
         the model is trained and which are used as the input for predictions.
         The
        
         [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
         as well as, according to dataset's state upon model creation,
        
         [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
         and
        
         [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
         must never be included here.
        
         Only 3 fields are used:
        
         * name - May be set on CreateModel, if set only the columns specified are
           used, otherwise all primary table's columns (except the ones listed
           above) are used for the training and prediction input.
        
         * display_name - Output only.
        
         * data_type - Output only.
         
        repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
      • getInputFeatureColumnSpecsCount

        int getInputFeatureColumnSpecsCount()
         Column specs of the dataset's primary table's columns, on which
         the model is trained and which are used as the input for predictions.
         The
        
         [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
         as well as, according to dataset's state upon model creation,
        
         [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
         and
        
         [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
         must never be included here.
        
         Only 3 fields are used:
        
         * name - May be set on CreateModel, if set only the columns specified are
           used, otherwise all primary table's columns (except the ones listed
           above) are used for the training and prediction input.
        
         * display_name - Output only.
        
         * data_type - Output only.
         
        repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
      • getInputFeatureColumnSpecsOrBuilderList

        List<? extends ColumnSpecOrBuilder> getInputFeatureColumnSpecsOrBuilderList()
         Column specs of the dataset's primary table's columns, on which
         the model is trained and which are used as the input for predictions.
         The
        
         [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
         as well as, according to dataset's state upon model creation,
        
         [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
         and
        
         [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
         must never be included here.
        
         Only 3 fields are used:
        
         * name - May be set on CreateModel, if set only the columns specified are
           used, otherwise all primary table's columns (except the ones listed
           above) are used for the training and prediction input.
        
         * display_name - Output only.
        
         * data_type - Output only.
         
        repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
      • getInputFeatureColumnSpecsOrBuilder

        ColumnSpecOrBuilder getInputFeatureColumnSpecsOrBuilder​(int index)
         Column specs of the dataset's primary table's columns, on which
         the model is trained and which are used as the input for predictions.
         The
        
         [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
         as well as, according to dataset's state upon model creation,
        
         [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
         and
        
         [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
         must never be included here.
        
         Only 3 fields are used:
        
         * name - May be set on CreateModel, if set only the columns specified are
           used, otherwise all primary table's columns (except the ones listed
           above) are used for the training and prediction input.
        
         * display_name - Output only.
        
         * data_type - Output only.
         
        repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;
      • getOptimizationObjective

        String getOptimizationObjective()
         Objective function the model is optimizing towards. The training process
         creates a model that maximizes/minimizes the value of the objective
         function over the validation set.
        
         The supported optimization objectives depend on the prediction type.
         If the field is not set, a default objective function is used.
        
         CLASSIFICATION_BINARY:
           "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
                                         operating characteristic (ROC) curve.
           "MINIMIZE_LOG_LOSS" - Minimize log loss.
           "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
           "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
                                           recall value.
           "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
                                            precision value.
        
         CLASSIFICATION_MULTI_CLASS :
           "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
        
        
         REGRESSION:
           "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
           "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
           "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
         
        string optimization_objective = 4;
        Returns:
        The optimizationObjective.
      • getOptimizationObjectiveBytes

        com.google.protobuf.ByteString getOptimizationObjectiveBytes()
         Objective function the model is optimizing towards. The training process
         creates a model that maximizes/minimizes the value of the objective
         function over the validation set.
        
         The supported optimization objectives depend on the prediction type.
         If the field is not set, a default objective function is used.
        
         CLASSIFICATION_BINARY:
           "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
                                         operating characteristic (ROC) curve.
           "MINIMIZE_LOG_LOSS" - Minimize log loss.
           "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
           "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
                                           recall value.
           "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
                                            precision value.
        
         CLASSIFICATION_MULTI_CLASS :
           "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
        
        
         REGRESSION:
           "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
           "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
           "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
         
        string optimization_objective = 4;
        Returns:
        The bytes for optimizationObjective.
      • getTablesModelColumnInfoList

        List<TablesModelColumnInfo> getTablesModelColumnInfoList()
         Output only. Auxiliary information for each of the
         input_feature_column_specs with respect to this particular model.
         
        repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
      • getTablesModelColumnInfo

        TablesModelColumnInfo getTablesModelColumnInfo​(int index)
         Output only. Auxiliary information for each of the
         input_feature_column_specs with respect to this particular model.
         
        repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
      • getTablesModelColumnInfoCount

        int getTablesModelColumnInfoCount()
         Output only. Auxiliary information for each of the
         input_feature_column_specs with respect to this particular model.
         
        repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
      • getTablesModelColumnInfoOrBuilderList

        List<? extends TablesModelColumnInfoOrBuilder> getTablesModelColumnInfoOrBuilderList()
         Output only. Auxiliary information for each of the
         input_feature_column_specs with respect to this particular model.
         
        repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
      • getTablesModelColumnInfoOrBuilder

        TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder​(int index)
         Output only. Auxiliary information for each of the
         input_feature_column_specs with respect to this particular model.
         
        repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
      • getTrainBudgetMilliNodeHours

        long getTrainBudgetMilliNodeHours()
         Required. The train budget of creating this model, expressed in milli node
         hours i.e. 1,000 value in this field means 1 node hour.
        
         The training cost of the model will not exceed this budget. The final cost
         will be attempted to be close to the budget, though may end up being (even)
         noticeably smaller - at the backend's discretion. This especially may
         happen when further model training ceases to provide any improvements.
        
         If the budget is set to a value known to be insufficient to train a
         model for the given dataset, the training won't be attempted and
         will error.
        
         The train budget must be between 1,000 and 72,000 milli node hours,
         inclusive.
         
        int64 train_budget_milli_node_hours = 6;
        Returns:
        The trainBudgetMilliNodeHours.
      • getTrainCostMilliNodeHours

        long getTrainCostMilliNodeHours()
         Output only. The actual training cost of the model, expressed in milli
         node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
         to not exceed the train budget.
         
        int64 train_cost_milli_node_hours = 7;
        Returns:
        The trainCostMilliNodeHours.
      • getDisableEarlyStopping

        boolean getDisableEarlyStopping()
         Use the entire training budget. This disables the early stopping feature.
         By default, the early stopping feature is enabled, which means that AutoML
         Tables might stop training before the entire training budget has been used.
         
        bool disable_early_stopping = 12;
        Returns:
        The disableEarlyStopping.