Class AutoMlForecastingInputs.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
- com.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Builder
-
- All Implemented Interfaces:
AutoMlForecastingInputsOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- AutoMlForecastingInputs
public static final class AutoMlForecastingInputs.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder> implements AutoMlForecastingInputsOrBuilder
Protobuf typegoogle.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description AutoMlForecastingInputs.Builder
addAdditionalExperiments(String value)
Additional experiment flags for the time series forcasting training.AutoMlForecastingInputs.Builder
addAdditionalExperimentsBytes(com.google.protobuf.ByteString value)
Additional experiment flags for the time series forcasting training.AutoMlForecastingInputs.Builder
addAllAdditionalExperiments(Iterable<String> values)
Additional experiment flags for the time series forcasting training.AutoMlForecastingInputs.Builder
addAllAvailableAtForecastColumns(Iterable<String> values)
Names of columns that are available and provided when a forecast is requested.AutoMlForecastingInputs.Builder
addAllQuantiles(Iterable<? extends Double> values)
Quantiles to use for minimize-quantile-loss `optimization_objective`.AutoMlForecastingInputs.Builder
addAllTimeSeriesAttributeColumns(Iterable<String> values)
Column names that should be used as attribute columns.AutoMlForecastingInputs.Builder
addAllTransformations(Iterable<? extends AutoMlForecastingInputs.Transformation> values)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
addAllUnavailableAtForecastColumns(Iterable<String> values)
Names of columns that are unavailable when a forecast is requested.AutoMlForecastingInputs.Builder
addAvailableAtForecastColumns(String value)
Names of columns that are available and provided when a forecast is requested.AutoMlForecastingInputs.Builder
addAvailableAtForecastColumnsBytes(com.google.protobuf.ByteString value)
Names of columns that are available and provided when a forecast is requested.AutoMlForecastingInputs.Builder
addQuantiles(double value)
Quantiles to use for minimize-quantile-loss `optimization_objective`.AutoMlForecastingInputs.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
AutoMlForecastingInputs.Builder
addTimeSeriesAttributeColumns(String value)
Column names that should be used as attribute columns.AutoMlForecastingInputs.Builder
addTimeSeriesAttributeColumnsBytes(com.google.protobuf.ByteString value)
Column names that should be used as attribute columns.AutoMlForecastingInputs.Builder
addTransformations(int index, AutoMlForecastingInputs.Transformation value)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
addTransformations(int index, AutoMlForecastingInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
addTransformations(AutoMlForecastingInputs.Transformation value)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
addTransformations(AutoMlForecastingInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Transformation.Builder
addTransformationsBuilder()
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Transformation.Builder
addTransformationsBuilder(int index)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
addUnavailableAtForecastColumns(String value)
Names of columns that are unavailable when a forecast is requested.AutoMlForecastingInputs.Builder
addUnavailableAtForecastColumnsBytes(com.google.protobuf.ByteString value)
Names of columns that are unavailable when a forecast is requested.AutoMlForecastingInputs
build()
AutoMlForecastingInputs
buildPartial()
AutoMlForecastingInputs.Builder
clear()
AutoMlForecastingInputs.Builder
clearAdditionalExperiments()
Additional experiment flags for the time series forcasting training.AutoMlForecastingInputs.Builder
clearAvailableAtForecastColumns()
Names of columns that are available and provided when a forecast is requested.AutoMlForecastingInputs.Builder
clearContextWindow()
The amount of time into the past training and prediction data is used for model training and prediction respectively.AutoMlForecastingInputs.Builder
clearDataGranularity()
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.Builder
clearExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.AutoMlForecastingInputs.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
AutoMlForecastingInputs.Builder
clearForecastHorizon()
The amount of time into the future for which forecasted values for the target are returned.AutoMlForecastingInputs.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
AutoMlForecastingInputs.Builder
clearOptimizationObjective()
Objective function the model is optimizing towards.AutoMlForecastingInputs.Builder
clearQuantiles()
Quantiles to use for minimize-quantile-loss `optimization_objective`.AutoMlForecastingInputs.Builder
clearTargetColumn()
The name of the column that the model is to predict.AutoMlForecastingInputs.Builder
clearTimeColumn()
The name of the column that identifies time order in the time series.AutoMlForecastingInputs.Builder
clearTimeSeriesAttributeColumns()
Column names that should be used as attribute columns.AutoMlForecastingInputs.Builder
clearTimeSeriesIdentifierColumn()
The name of the column that identifies the time series.AutoMlForecastingInputs.Builder
clearTrainBudgetMilliNodeHours()
Required.AutoMlForecastingInputs.Builder
clearTransformations()
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
clearUnavailableAtForecastColumns()
Names of columns that are unavailable when a forecast is requested.AutoMlForecastingInputs.Builder
clearValidationOptions()
Validation options for the data validation component.AutoMlForecastingInputs.Builder
clearWeightColumn()
Column name that should be used as the weight column.AutoMlForecastingInputs.Builder
clone()
String
getAdditionalExperiments(int index)
Additional experiment flags for the time series forcasting training.com.google.protobuf.ByteString
getAdditionalExperimentsBytes(int index)
Additional experiment flags for the time series forcasting training.int
getAdditionalExperimentsCount()
Additional experiment flags for the time series forcasting training.com.google.protobuf.ProtocolStringList
getAdditionalExperimentsList()
Additional experiment flags for the time series forcasting training.String
getAvailableAtForecastColumns(int index)
Names of columns that are available and provided when a forecast is requested.com.google.protobuf.ByteString
getAvailableAtForecastColumnsBytes(int index)
Names of columns that are available and provided when a forecast is requested.int
getAvailableAtForecastColumnsCount()
Names of columns that are available and provided when a forecast is requested.com.google.protobuf.ProtocolStringList
getAvailableAtForecastColumnsList()
Names of columns that are available and provided when a forecast is requested.long
getContextWindow()
The amount of time into the past training and prediction data is used for model training and prediction respectively.AutoMlForecastingInputs.Granularity
getDataGranularity()
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.Granularity.Builder
getDataGranularityBuilder()
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.GranularityOrBuilder
getDataGranularityOrBuilder()
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs
getDefaultInstanceForType()
static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
com.google.protobuf.Descriptors.Descriptor
getDescriptorForType()
ExportEvaluatedDataItemsConfig
getExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.ExportEvaluatedDataItemsConfig.Builder
getExportEvaluatedDataItemsConfigBuilder()
Configuration for exporting test set predictions to a BigQuery table.ExportEvaluatedDataItemsConfigOrBuilder
getExportEvaluatedDataItemsConfigOrBuilder()
Configuration for exporting test set predictions to a BigQuery table.long
getForecastHorizon()
The amount of time into the future for which forecasted values for the target are returned.String
getOptimizationObjective()
Objective function the model is optimizing towards.com.google.protobuf.ByteString
getOptimizationObjectiveBytes()
Objective function the model is optimizing towards.double
getQuantiles(int index)
Quantiles to use for minimize-quantile-loss `optimization_objective`.int
getQuantilesCount()
Quantiles to use for minimize-quantile-loss `optimization_objective`.List<Double>
getQuantilesList()
Quantiles to use for minimize-quantile-loss `optimization_objective`.String
getTargetColumn()
The name of the column that the model is to predict.com.google.protobuf.ByteString
getTargetColumnBytes()
The name of the column that the model is to predict.String
getTimeColumn()
The name of the column that identifies time order in the time series.com.google.protobuf.ByteString
getTimeColumnBytes()
The name of the column that identifies time order in the time series.String
getTimeSeriesAttributeColumns(int index)
Column names that should be used as attribute columns.com.google.protobuf.ByteString
getTimeSeriesAttributeColumnsBytes(int index)
Column names that should be used as attribute columns.int
getTimeSeriesAttributeColumnsCount()
Column names that should be used as attribute columns.com.google.protobuf.ProtocolStringList
getTimeSeriesAttributeColumnsList()
Column names that should be used as attribute columns.String
getTimeSeriesIdentifierColumn()
The name of the column that identifies the time series.com.google.protobuf.ByteString
getTimeSeriesIdentifierColumnBytes()
The name of the column that identifies the time series.long
getTrainBudgetMilliNodeHours()
Required.AutoMlForecastingInputs.Transformation
getTransformations(int index)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Transformation.Builder
getTransformationsBuilder(int index)
Each transformation will apply transform function to given input column.List<AutoMlForecastingInputs.Transformation.Builder>
getTransformationsBuilderList()
Each transformation will apply transform function to given input column.int
getTransformationsCount()
Each transformation will apply transform function to given input column.List<AutoMlForecastingInputs.Transformation>
getTransformationsList()
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.TransformationOrBuilder
getTransformationsOrBuilder(int index)
Each transformation will apply transform function to given input column.List<? extends AutoMlForecastingInputs.TransformationOrBuilder>
getTransformationsOrBuilderList()
Each transformation will apply transform function to given input column.String
getUnavailableAtForecastColumns(int index)
Names of columns that are unavailable when a forecast is requested.com.google.protobuf.ByteString
getUnavailableAtForecastColumnsBytes(int index)
Names of columns that are unavailable when a forecast is requested.int
getUnavailableAtForecastColumnsCount()
Names of columns that are unavailable when a forecast is requested.com.google.protobuf.ProtocolStringList
getUnavailableAtForecastColumnsList()
Names of columns that are unavailable when a forecast is requested.String
getValidationOptions()
Validation options for the data validation component.com.google.protobuf.ByteString
getValidationOptionsBytes()
Validation options for the data validation component.String
getWeightColumn()
Column name that should be used as the weight column.com.google.protobuf.ByteString
getWeightColumnBytes()
Column name that should be used as the weight column.boolean
hasDataGranularity()
Expected difference in time granularity between rows in the data.boolean
hasExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
boolean
isInitialized()
AutoMlForecastingInputs.Builder
mergeDataGranularity(AutoMlForecastingInputs.Granularity value)
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.Builder
mergeExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table.AutoMlForecastingInputs.Builder
mergeFrom(AutoMlForecastingInputs other)
AutoMlForecastingInputs.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
AutoMlForecastingInputs.Builder
mergeFrom(com.google.protobuf.Message other)
AutoMlForecastingInputs.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
AutoMlForecastingInputs.Builder
removeTransformations(int index)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
setAdditionalExperiments(int index, String value)
Additional experiment flags for the time series forcasting training.AutoMlForecastingInputs.Builder
setAvailableAtForecastColumns(int index, String value)
Names of columns that are available and provided when a forecast is requested.AutoMlForecastingInputs.Builder
setContextWindow(long value)
The amount of time into the past training and prediction data is used for model training and prediction respectively.AutoMlForecastingInputs.Builder
setDataGranularity(AutoMlForecastingInputs.Granularity value)
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.Builder
setDataGranularity(AutoMlForecastingInputs.Granularity.Builder builderForValue)
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.Builder
setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table.AutoMlForecastingInputs.Builder
setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig.Builder builderForValue)
Configuration for exporting test set predictions to a BigQuery table.AutoMlForecastingInputs.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
AutoMlForecastingInputs.Builder
setForecastHorizon(long value)
The amount of time into the future for which forecasted values for the target are returned.AutoMlForecastingInputs.Builder
setOptimizationObjective(String value)
Objective function the model is optimizing towards.AutoMlForecastingInputs.Builder
setOptimizationObjectiveBytes(com.google.protobuf.ByteString value)
Objective function the model is optimizing towards.AutoMlForecastingInputs.Builder
setQuantiles(int index, double value)
Quantiles to use for minimize-quantile-loss `optimization_objective`.AutoMlForecastingInputs.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
AutoMlForecastingInputs.Builder
setTargetColumn(String value)
The name of the column that the model is to predict.AutoMlForecastingInputs.Builder
setTargetColumnBytes(com.google.protobuf.ByteString value)
The name of the column that the model is to predict.AutoMlForecastingInputs.Builder
setTimeColumn(String value)
The name of the column that identifies time order in the time series.AutoMlForecastingInputs.Builder
setTimeColumnBytes(com.google.protobuf.ByteString value)
The name of the column that identifies time order in the time series.AutoMlForecastingInputs.Builder
setTimeSeriesAttributeColumns(int index, String value)
Column names that should be used as attribute columns.AutoMlForecastingInputs.Builder
setTimeSeriesIdentifierColumn(String value)
The name of the column that identifies the time series.AutoMlForecastingInputs.Builder
setTimeSeriesIdentifierColumnBytes(com.google.protobuf.ByteString value)
The name of the column that identifies the time series.AutoMlForecastingInputs.Builder
setTrainBudgetMilliNodeHours(long value)
Required.AutoMlForecastingInputs.Builder
setTransformations(int index, AutoMlForecastingInputs.Transformation value)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
setTransformations(int index, AutoMlForecastingInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.Builder
setUnavailableAtForecastColumns(int index, String value)
Names of columns that are unavailable when a forecast is requested.AutoMlForecastingInputs.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
AutoMlForecastingInputs.Builder
setValidationOptions(String value)
Validation options for the data validation component.AutoMlForecastingInputs.Builder
setValidationOptionsBytes(com.google.protobuf.ByteString value)
Validation options for the data validation component.AutoMlForecastingInputs.Builder
setWeightColumn(String value)
Column name that should be used as the weight column.AutoMlForecastingInputs.Builder
setWeightColumnBytes(com.google.protobuf.ByteString value)
Column name that should be used as the weight column.-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
clear
public AutoMlForecastingInputs.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
getDefaultInstanceForType
public AutoMlForecastingInputs getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public AutoMlForecastingInputs build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public AutoMlForecastingInputs buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public AutoMlForecastingInputs.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
setField
public AutoMlForecastingInputs.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
clearField
public AutoMlForecastingInputs.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
clearOneof
public AutoMlForecastingInputs.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
setRepeatedField
public AutoMlForecastingInputs.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
addRepeatedField
public AutoMlForecastingInputs.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
mergeFrom
public AutoMlForecastingInputs.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<AutoMlForecastingInputs.Builder>
-
mergeFrom
public AutoMlForecastingInputs.Builder mergeFrom(AutoMlForecastingInputs other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
mergeFrom
public AutoMlForecastingInputs.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<AutoMlForecastingInputs.Builder>
- Throws:
IOException
-
getTargetColumn
public String getTargetColumn()
The name of the column that the model is to predict.
string target_column = 1;
- Specified by:
getTargetColumn
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The targetColumn.
-
getTargetColumnBytes
public com.google.protobuf.ByteString getTargetColumnBytes()
The name of the column that the model is to predict.
string target_column = 1;
- Specified by:
getTargetColumnBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The bytes for targetColumn.
-
setTargetColumn
public AutoMlForecastingInputs.Builder setTargetColumn(String value)
The name of the column that the model is to predict.
string target_column = 1;
- Parameters:
value
- The targetColumn to set.- Returns:
- This builder for chaining.
-
clearTargetColumn
public AutoMlForecastingInputs.Builder clearTargetColumn()
The name of the column that the model is to predict.
string target_column = 1;
- Returns:
- This builder for chaining.
-
setTargetColumnBytes
public AutoMlForecastingInputs.Builder setTargetColumnBytes(com.google.protobuf.ByteString value)
The name of the column that the model is to predict.
string target_column = 1;
- Parameters:
value
- The bytes for targetColumn to set.- Returns:
- This builder for chaining.
-
getTimeSeriesIdentifierColumn
public String getTimeSeriesIdentifierColumn()
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Specified by:
getTimeSeriesIdentifierColumn
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The timeSeriesIdentifierColumn.
-
getTimeSeriesIdentifierColumnBytes
public com.google.protobuf.ByteString getTimeSeriesIdentifierColumnBytes()
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Specified by:
getTimeSeriesIdentifierColumnBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The bytes for timeSeriesIdentifierColumn.
-
setTimeSeriesIdentifierColumn
public AutoMlForecastingInputs.Builder setTimeSeriesIdentifierColumn(String value)
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Parameters:
value
- The timeSeriesIdentifierColumn to set.- Returns:
- This builder for chaining.
-
clearTimeSeriesIdentifierColumn
public AutoMlForecastingInputs.Builder clearTimeSeriesIdentifierColumn()
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Returns:
- This builder for chaining.
-
setTimeSeriesIdentifierColumnBytes
public AutoMlForecastingInputs.Builder setTimeSeriesIdentifierColumnBytes(com.google.protobuf.ByteString value)
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Parameters:
value
- The bytes for timeSeriesIdentifierColumn to set.- Returns:
- This builder for chaining.
-
getTimeColumn
public String getTimeColumn()
The name of the column that identifies time order in the time series.
string time_column = 3;
- Specified by:
getTimeColumn
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The timeColumn.
-
getTimeColumnBytes
public com.google.protobuf.ByteString getTimeColumnBytes()
The name of the column that identifies time order in the time series.
string time_column = 3;
- Specified by:
getTimeColumnBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The bytes for timeColumn.
-
setTimeColumn
public AutoMlForecastingInputs.Builder setTimeColumn(String value)
The name of the column that identifies time order in the time series.
string time_column = 3;
- Parameters:
value
- The timeColumn to set.- Returns:
- This builder for chaining.
-
clearTimeColumn
public AutoMlForecastingInputs.Builder clearTimeColumn()
The name of the column that identifies time order in the time series.
string time_column = 3;
- Returns:
- This builder for chaining.
-
setTimeColumnBytes
public AutoMlForecastingInputs.Builder setTimeColumnBytes(com.google.protobuf.ByteString value)
The name of the column that identifies time order in the time series.
string time_column = 3;
- Parameters:
value
- The bytes for timeColumn to set.- Returns:
- This builder for chaining.
-
getTransformationsList
public List<AutoMlForecastingInputs.Transformation> getTransformationsList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
- Specified by:
getTransformationsList
in interfaceAutoMlForecastingInputsOrBuilder
-
getTransformationsCount
public int getTransformationsCount()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
- Specified by:
getTransformationsCount
in interfaceAutoMlForecastingInputsOrBuilder
-
getTransformations
public AutoMlForecastingInputs.Transformation getTransformations(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
- Specified by:
getTransformations
in interfaceAutoMlForecastingInputsOrBuilder
-
setTransformations
public AutoMlForecastingInputs.Builder setTransformations(int index, AutoMlForecastingInputs.Transformation value)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
setTransformations
public AutoMlForecastingInputs.Builder setTransformations(int index, AutoMlForecastingInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
addTransformations
public AutoMlForecastingInputs.Builder addTransformations(AutoMlForecastingInputs.Transformation value)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
addTransformations
public AutoMlForecastingInputs.Builder addTransformations(int index, AutoMlForecastingInputs.Transformation value)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
addTransformations
public AutoMlForecastingInputs.Builder addTransformations(AutoMlForecastingInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
addTransformations
public AutoMlForecastingInputs.Builder addTransformations(int index, AutoMlForecastingInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
addAllTransformations
public AutoMlForecastingInputs.Builder addAllTransformations(Iterable<? extends AutoMlForecastingInputs.Transformation> values)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
clearTransformations
public AutoMlForecastingInputs.Builder clearTransformations()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
removeTransformations
public AutoMlForecastingInputs.Builder removeTransformations(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformationsBuilder
public AutoMlForecastingInputs.Transformation.Builder getTransformationsBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformationsOrBuilder
public AutoMlForecastingInputs.TransformationOrBuilder getTransformationsOrBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
- Specified by:
getTransformationsOrBuilder
in interfaceAutoMlForecastingInputsOrBuilder
-
getTransformationsOrBuilderList
public List<? extends AutoMlForecastingInputs.TransformationOrBuilder> getTransformationsOrBuilderList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
- Specified by:
getTransformationsOrBuilderList
in interfaceAutoMlForecastingInputsOrBuilder
-
addTransformationsBuilder
public AutoMlForecastingInputs.Transformation.Builder addTransformationsBuilder()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
addTransformationsBuilder
public AutoMlForecastingInputs.Transformation.Builder addTransformationsBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformationsBuilderList
public List<AutoMlForecastingInputs.Transformation.Builder> getTransformationsBuilderList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getOptimizationObjective
public String getOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Specified by:
getOptimizationObjective
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The optimizationObjective.
-
getOptimizationObjectiveBytes
public com.google.protobuf.ByteString getOptimizationObjectiveBytes()
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Specified by:
getOptimizationObjectiveBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The bytes for optimizationObjective.
-
setOptimizationObjective
public AutoMlForecastingInputs.Builder setOptimizationObjective(String value)
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Parameters:
value
- The optimizationObjective to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjective
public AutoMlForecastingInputs.Builder clearOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Returns:
- This builder for chaining.
-
setOptimizationObjectiveBytes
public AutoMlForecastingInputs.Builder setOptimizationObjectiveBytes(com.google.protobuf.ByteString value)
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Parameters:
value
- The bytes for optimizationObjective to set.- Returns:
- This builder for chaining.
-
getTrainBudgetMilliNodeHours
public long getTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Specified by:
getTrainBudgetMilliNodeHours
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The trainBudgetMilliNodeHours.
-
setTrainBudgetMilliNodeHours
public AutoMlForecastingInputs.Builder setTrainBudgetMilliNodeHours(long value)
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Parameters:
value
- The trainBudgetMilliNodeHours to set.- Returns:
- This builder for chaining.
-
clearTrainBudgetMilliNodeHours
public AutoMlForecastingInputs.Builder clearTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Returns:
- This builder for chaining.
-
getWeightColumn
public String getWeightColumn()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Specified by:
getWeightColumn
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The weightColumn.
-
getWeightColumnBytes
public com.google.protobuf.ByteString getWeightColumnBytes()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Specified by:
getWeightColumnBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The bytes for weightColumn.
-
setWeightColumn
public AutoMlForecastingInputs.Builder setWeightColumn(String value)
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Parameters:
value
- The weightColumn to set.- Returns:
- This builder for chaining.
-
clearWeightColumn
public AutoMlForecastingInputs.Builder clearWeightColumn()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Returns:
- This builder for chaining.
-
setWeightColumnBytes
public AutoMlForecastingInputs.Builder setWeightColumnBytes(com.google.protobuf.ByteString value)
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Parameters:
value
- The bytes for weightColumn to set.- Returns:
- This builder for chaining.
-
getTimeSeriesAttributeColumnsList
public com.google.protobuf.ProtocolStringList getTimeSeriesAttributeColumnsList()
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Specified by:
getTimeSeriesAttributeColumnsList
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- A list containing the timeSeriesAttributeColumns.
-
getTimeSeriesAttributeColumnsCount
public int getTimeSeriesAttributeColumnsCount()
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Specified by:
getTimeSeriesAttributeColumnsCount
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The count of timeSeriesAttributeColumns.
-
getTimeSeriesAttributeColumns
public String getTimeSeriesAttributeColumns(int index)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Specified by:
getTimeSeriesAttributeColumns
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The timeSeriesAttributeColumns at the given index.
-
getTimeSeriesAttributeColumnsBytes
public com.google.protobuf.ByteString getTimeSeriesAttributeColumnsBytes(int index)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Specified by:
getTimeSeriesAttributeColumnsBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the timeSeriesAttributeColumns at the given index.
-
setTimeSeriesAttributeColumns
public AutoMlForecastingInputs.Builder setTimeSeriesAttributeColumns(int index, String value)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Parameters:
index
- The index to set the value at.value
- The timeSeriesAttributeColumns to set.- Returns:
- This builder for chaining.
-
addTimeSeriesAttributeColumns
public AutoMlForecastingInputs.Builder addTimeSeriesAttributeColumns(String value)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Parameters:
value
- The timeSeriesAttributeColumns to add.- Returns:
- This builder for chaining.
-
addAllTimeSeriesAttributeColumns
public AutoMlForecastingInputs.Builder addAllTimeSeriesAttributeColumns(Iterable<String> values)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Parameters:
values
- The timeSeriesAttributeColumns to add.- Returns:
- This builder for chaining.
-
clearTimeSeriesAttributeColumns
public AutoMlForecastingInputs.Builder clearTimeSeriesAttributeColumns()
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Returns:
- This builder for chaining.
-
addTimeSeriesAttributeColumnsBytes
public AutoMlForecastingInputs.Builder addTimeSeriesAttributeColumnsBytes(com.google.protobuf.ByteString value)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Parameters:
value
- The bytes of the timeSeriesAttributeColumns to add.- Returns:
- This builder for chaining.
-
getUnavailableAtForecastColumnsList
public com.google.protobuf.ProtocolStringList getUnavailableAtForecastColumnsList()
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Specified by:
getUnavailableAtForecastColumnsList
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- A list containing the unavailableAtForecastColumns.
-
getUnavailableAtForecastColumnsCount
public int getUnavailableAtForecastColumnsCount()
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Specified by:
getUnavailableAtForecastColumnsCount
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The count of unavailableAtForecastColumns.
-
getUnavailableAtForecastColumns
public String getUnavailableAtForecastColumns(int index)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Specified by:
getUnavailableAtForecastColumns
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The unavailableAtForecastColumns at the given index.
-
getUnavailableAtForecastColumnsBytes
public com.google.protobuf.ByteString getUnavailableAtForecastColumnsBytes(int index)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Specified by:
getUnavailableAtForecastColumnsBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the unavailableAtForecastColumns at the given index.
-
setUnavailableAtForecastColumns
public AutoMlForecastingInputs.Builder setUnavailableAtForecastColumns(int index, String value)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Parameters:
index
- The index to set the value at.value
- The unavailableAtForecastColumns to set.- Returns:
- This builder for chaining.
-
addUnavailableAtForecastColumns
public AutoMlForecastingInputs.Builder addUnavailableAtForecastColumns(String value)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Parameters:
value
- The unavailableAtForecastColumns to add.- Returns:
- This builder for chaining.
-
addAllUnavailableAtForecastColumns
public AutoMlForecastingInputs.Builder addAllUnavailableAtForecastColumns(Iterable<String> values)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Parameters:
values
- The unavailableAtForecastColumns to add.- Returns:
- This builder for chaining.
-
clearUnavailableAtForecastColumns
public AutoMlForecastingInputs.Builder clearUnavailableAtForecastColumns()
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Returns:
- This builder for chaining.
-
addUnavailableAtForecastColumnsBytes
public AutoMlForecastingInputs.Builder addUnavailableAtForecastColumnsBytes(com.google.protobuf.ByteString value)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Parameters:
value
- The bytes of the unavailableAtForecastColumns to add.- Returns:
- This builder for chaining.
-
getAvailableAtForecastColumnsList
public com.google.protobuf.ProtocolStringList getAvailableAtForecastColumnsList()
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Specified by:
getAvailableAtForecastColumnsList
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- A list containing the availableAtForecastColumns.
-
getAvailableAtForecastColumnsCount
public int getAvailableAtForecastColumnsCount()
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Specified by:
getAvailableAtForecastColumnsCount
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The count of availableAtForecastColumns.
-
getAvailableAtForecastColumns
public String getAvailableAtForecastColumns(int index)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Specified by:
getAvailableAtForecastColumns
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The availableAtForecastColumns at the given index.
-
getAvailableAtForecastColumnsBytes
public com.google.protobuf.ByteString getAvailableAtForecastColumnsBytes(int index)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Specified by:
getAvailableAtForecastColumnsBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the availableAtForecastColumns at the given index.
-
setAvailableAtForecastColumns
public AutoMlForecastingInputs.Builder setAvailableAtForecastColumns(int index, String value)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Parameters:
index
- The index to set the value at.value
- The availableAtForecastColumns to set.- Returns:
- This builder for chaining.
-
addAvailableAtForecastColumns
public AutoMlForecastingInputs.Builder addAvailableAtForecastColumns(String value)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Parameters:
value
- The availableAtForecastColumns to add.- Returns:
- This builder for chaining.
-
addAllAvailableAtForecastColumns
public AutoMlForecastingInputs.Builder addAllAvailableAtForecastColumns(Iterable<String> values)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Parameters:
values
- The availableAtForecastColumns to add.- Returns:
- This builder for chaining.
-
clearAvailableAtForecastColumns
public AutoMlForecastingInputs.Builder clearAvailableAtForecastColumns()
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Returns:
- This builder for chaining.
-
addAvailableAtForecastColumnsBytes
public AutoMlForecastingInputs.Builder addAvailableAtForecastColumnsBytes(com.google.protobuf.ByteString value)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Parameters:
value
- The bytes of the availableAtForecastColumns to add.- Returns:
- This builder for chaining.
-
hasDataGranularity
public boolean hasDataGranularity()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
- Specified by:
hasDataGranularity
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- Whether the dataGranularity field is set.
-
getDataGranularity
public AutoMlForecastingInputs.Granularity getDataGranularity()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
- Specified by:
getDataGranularity
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The dataGranularity.
-
setDataGranularity
public AutoMlForecastingInputs.Builder setDataGranularity(AutoMlForecastingInputs.Granularity value)
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
-
setDataGranularity
public AutoMlForecastingInputs.Builder setDataGranularity(AutoMlForecastingInputs.Granularity.Builder builderForValue)
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
-
mergeDataGranularity
public AutoMlForecastingInputs.Builder mergeDataGranularity(AutoMlForecastingInputs.Granularity value)
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
-
clearDataGranularity
public AutoMlForecastingInputs.Builder clearDataGranularity()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
-
getDataGranularityBuilder
public AutoMlForecastingInputs.Granularity.Builder getDataGranularityBuilder()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
-
getDataGranularityOrBuilder
public AutoMlForecastingInputs.GranularityOrBuilder getDataGranularityOrBuilder()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
- Specified by:
getDataGranularityOrBuilder
in interfaceAutoMlForecastingInputsOrBuilder
-
getForecastHorizon
public long getForecastHorizon()
The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the `data_granularity` field.
int64 forecast_horizon = 23;
- Specified by:
getForecastHorizon
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The forecastHorizon.
-
setForecastHorizon
public AutoMlForecastingInputs.Builder setForecastHorizon(long value)
The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the `data_granularity` field.
int64 forecast_horizon = 23;
- Parameters:
value
- The forecastHorizon to set.- Returns:
- This builder for chaining.
-
clearForecastHorizon
public AutoMlForecastingInputs.Builder clearForecastHorizon()
The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the `data_granularity` field.
int64 forecast_horizon = 23;
- Returns:
- This builder for chaining.
-
getContextWindow
public long getContextWindow()
The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the `data_granularity` field.
int64 context_window = 24;
- Specified by:
getContextWindow
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The contextWindow.
-
setContextWindow
public AutoMlForecastingInputs.Builder setContextWindow(long value)
The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the `data_granularity` field.
int64 context_window = 24;
- Parameters:
value
- The contextWindow to set.- Returns:
- This builder for chaining.
-
clearContextWindow
public AutoMlForecastingInputs.Builder clearContextWindow()
The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the `data_granularity` field.
int64 context_window = 24;
- Returns:
- This builder for chaining.
-
hasExportEvaluatedDataItemsConfig
public boolean hasExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
- Specified by:
hasExportEvaluatedDataItemsConfig
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- Whether the exportEvaluatedDataItemsConfig field is set.
-
getExportEvaluatedDataItemsConfig
public ExportEvaluatedDataItemsConfig getExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
- Specified by:
getExportEvaluatedDataItemsConfig
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The exportEvaluatedDataItemsConfig.
-
setExportEvaluatedDataItemsConfig
public AutoMlForecastingInputs.Builder setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
-
setExportEvaluatedDataItemsConfig
public AutoMlForecastingInputs.Builder setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig.Builder builderForValue)
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
-
mergeExportEvaluatedDataItemsConfig
public AutoMlForecastingInputs.Builder mergeExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
-
clearExportEvaluatedDataItemsConfig
public AutoMlForecastingInputs.Builder clearExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
-
getExportEvaluatedDataItemsConfigBuilder
public ExportEvaluatedDataItemsConfig.Builder getExportEvaluatedDataItemsConfigBuilder()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
-
getExportEvaluatedDataItemsConfigOrBuilder
public ExportEvaluatedDataItemsConfigOrBuilder getExportEvaluatedDataItemsConfigOrBuilder()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
- Specified by:
getExportEvaluatedDataItemsConfigOrBuilder
in interfaceAutoMlForecastingInputsOrBuilder
-
getQuantilesList
public List<Double> getQuantilesList()
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Specified by:
getQuantilesList
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- A list containing the quantiles.
-
getQuantilesCount
public int getQuantilesCount()
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Specified by:
getQuantilesCount
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The count of quantiles.
-
getQuantiles
public double getQuantiles(int index)
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Specified by:
getQuantiles
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The quantiles at the given index.
-
setQuantiles
public AutoMlForecastingInputs.Builder setQuantiles(int index, double value)
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Parameters:
index
- The index to set the value at.value
- The quantiles to set.- Returns:
- This builder for chaining.
-
addQuantiles
public AutoMlForecastingInputs.Builder addQuantiles(double value)
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Parameters:
value
- The quantiles to add.- Returns:
- This builder for chaining.
-
addAllQuantiles
public AutoMlForecastingInputs.Builder addAllQuantiles(Iterable<? extends Double> values)
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Parameters:
values
- The quantiles to add.- Returns:
- This builder for chaining.
-
clearQuantiles
public AutoMlForecastingInputs.Builder clearQuantiles()
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Returns:
- This builder for chaining.
-
getValidationOptions
public String getValidationOptions()
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Specified by:
getValidationOptions
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The validationOptions.
-
getValidationOptionsBytes
public com.google.protobuf.ByteString getValidationOptionsBytes()
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Specified by:
getValidationOptionsBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The bytes for validationOptions.
-
setValidationOptions
public AutoMlForecastingInputs.Builder setValidationOptions(String value)
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Parameters:
value
- The validationOptions to set.- Returns:
- This builder for chaining.
-
clearValidationOptions
public AutoMlForecastingInputs.Builder clearValidationOptions()
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Returns:
- This builder for chaining.
-
setValidationOptionsBytes
public AutoMlForecastingInputs.Builder setValidationOptionsBytes(com.google.protobuf.ByteString value)
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Parameters:
value
- The bytes for validationOptions to set.- Returns:
- This builder for chaining.
-
getAdditionalExperimentsList
public com.google.protobuf.ProtocolStringList getAdditionalExperimentsList()
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Specified by:
getAdditionalExperimentsList
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- A list containing the additionalExperiments.
-
getAdditionalExperimentsCount
public int getAdditionalExperimentsCount()
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Specified by:
getAdditionalExperimentsCount
in interfaceAutoMlForecastingInputsOrBuilder
- Returns:
- The count of additionalExperiments.
-
getAdditionalExperiments
public String getAdditionalExperiments(int index)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Specified by:
getAdditionalExperiments
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The additionalExperiments at the given index.
-
getAdditionalExperimentsBytes
public com.google.protobuf.ByteString getAdditionalExperimentsBytes(int index)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Specified by:
getAdditionalExperimentsBytes
in interfaceAutoMlForecastingInputsOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the additionalExperiments at the given index.
-
setAdditionalExperiments
public AutoMlForecastingInputs.Builder setAdditionalExperiments(int index, String value)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Parameters:
index
- The index to set the value at.value
- The additionalExperiments to set.- Returns:
- This builder for chaining.
-
addAdditionalExperiments
public AutoMlForecastingInputs.Builder addAdditionalExperiments(String value)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Parameters:
value
- The additionalExperiments to add.- Returns:
- This builder for chaining.
-
addAllAdditionalExperiments
public AutoMlForecastingInputs.Builder addAllAdditionalExperiments(Iterable<String> values)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Parameters:
values
- The additionalExperiments to add.- Returns:
- This builder for chaining.
-
clearAdditionalExperiments
public AutoMlForecastingInputs.Builder clearAdditionalExperiments()
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Returns:
- This builder for chaining.
-
addAdditionalExperimentsBytes
public AutoMlForecastingInputs.Builder addAdditionalExperimentsBytes(com.google.protobuf.ByteString value)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Parameters:
value
- The bytes of the additionalExperiments to add.- Returns:
- This builder for chaining.
-
setUnknownFields
public final AutoMlForecastingInputs.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
mergeUnknownFields
public final AutoMlForecastingInputs.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlForecastingInputs.Builder>
-
-