Interface AutoMlForecastingInputsOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
AutoMlForecastingInputs
,AutoMlForecastingInputs.Builder
public interface AutoMlForecastingInputsOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description String
getAdditionalExperiments(int index)
Additional experiment flags for the time series forcasting training.com.google.protobuf.ByteString
getAdditionalExperimentsBytes(int index)
Additional experiment flags for the time series forcasting training.int
getAdditionalExperimentsCount()
Additional experiment flags for the time series forcasting training.List<String>
getAdditionalExperimentsList()
Additional experiment flags for the time series forcasting training.String
getAvailableAtForecastColumns(int index)
Names of columns that are available and provided when a forecast is requested.com.google.protobuf.ByteString
getAvailableAtForecastColumnsBytes(int index)
Names of columns that are available and provided when a forecast is requested.int
getAvailableAtForecastColumnsCount()
Names of columns that are available and provided when a forecast is requested.List<String>
getAvailableAtForecastColumnsList()
Names of columns that are available and provided when a forecast is requested.long
getContextWindow()
The amount of time into the past training and prediction data is used for model training and prediction respectively.AutoMlForecastingInputs.Granularity
getDataGranularity()
Expected difference in time granularity between rows in the data.AutoMlForecastingInputs.GranularityOrBuilder
getDataGranularityOrBuilder()
Expected difference in time granularity between rows in the data.ExportEvaluatedDataItemsConfig
getExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.ExportEvaluatedDataItemsConfigOrBuilder
getExportEvaluatedDataItemsConfigOrBuilder()
Configuration for exporting test set predictions to a BigQuery table.long
getForecastHorizon()
The amount of time into the future for which forecasted values for the target are returned.String
getOptimizationObjective()
Objective function the model is optimizing towards.com.google.protobuf.ByteString
getOptimizationObjectiveBytes()
Objective function the model is optimizing towards.double
getQuantiles(int index)
Quantiles to use for minimize-quantile-loss `optimization_objective`.int
getQuantilesCount()
Quantiles to use for minimize-quantile-loss `optimization_objective`.List<Double>
getQuantilesList()
Quantiles to use for minimize-quantile-loss `optimization_objective`.String
getTargetColumn()
The name of the column that the model is to predict.com.google.protobuf.ByteString
getTargetColumnBytes()
The name of the column that the model is to predict.String
getTimeColumn()
The name of the column that identifies time order in the time series.com.google.protobuf.ByteString
getTimeColumnBytes()
The name of the column that identifies time order in the time series.String
getTimeSeriesAttributeColumns(int index)
Column names that should be used as attribute columns.com.google.protobuf.ByteString
getTimeSeriesAttributeColumnsBytes(int index)
Column names that should be used as attribute columns.int
getTimeSeriesAttributeColumnsCount()
Column names that should be used as attribute columns.List<String>
getTimeSeriesAttributeColumnsList()
Column names that should be used as attribute columns.String
getTimeSeriesIdentifierColumn()
The name of the column that identifies the time series.com.google.protobuf.ByteString
getTimeSeriesIdentifierColumnBytes()
The name of the column that identifies the time series.long
getTrainBudgetMilliNodeHours()
Required.AutoMlForecastingInputs.Transformation
getTransformations(int index)
Each transformation will apply transform function to given input column.int
getTransformationsCount()
Each transformation will apply transform function to given input column.List<AutoMlForecastingInputs.Transformation>
getTransformationsList()
Each transformation will apply transform function to given input column.AutoMlForecastingInputs.TransformationOrBuilder
getTransformationsOrBuilder(int index)
Each transformation will apply transform function to given input column.List<? extends AutoMlForecastingInputs.TransformationOrBuilder>
getTransformationsOrBuilderList()
Each transformation will apply transform function to given input column.String
getUnavailableAtForecastColumns(int index)
Names of columns that are unavailable when a forecast is requested.com.google.protobuf.ByteString
getUnavailableAtForecastColumnsBytes(int index)
Names of columns that are unavailable when a forecast is requested.int
getUnavailableAtForecastColumnsCount()
Names of columns that are unavailable when a forecast is requested.List<String>
getUnavailableAtForecastColumnsList()
Names of columns that are unavailable when a forecast is requested.String
getValidationOptions()
Validation options for the data validation component.com.google.protobuf.ByteString
getValidationOptionsBytes()
Validation options for the data validation component.String
getWeightColumn()
Column name that should be used as the weight column.com.google.protobuf.ByteString
getWeightColumnBytes()
Column name that should be used as the weight column.boolean
hasDataGranularity()
Expected difference in time granularity between rows in the data.boolean
hasExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getTargetColumn
String getTargetColumn()
The name of the column that the model is to predict.
string target_column = 1;
- Returns:
- The targetColumn.
-
getTargetColumnBytes
com.google.protobuf.ByteString getTargetColumnBytes()
The name of the column that the model is to predict.
string target_column = 1;
- Returns:
- The bytes for targetColumn.
-
getTimeSeriesIdentifierColumn
String getTimeSeriesIdentifierColumn()
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Returns:
- The timeSeriesIdentifierColumn.
-
getTimeSeriesIdentifierColumnBytes
com.google.protobuf.ByteString getTimeSeriesIdentifierColumnBytes()
The name of the column that identifies the time series.
string time_series_identifier_column = 2;
- Returns:
- The bytes for timeSeriesIdentifierColumn.
-
getTimeColumn
String getTimeColumn()
The name of the column that identifies time order in the time series.
string time_column = 3;
- Returns:
- The timeColumn.
-
getTimeColumnBytes
com.google.protobuf.ByteString getTimeColumnBytes()
The name of the column that identifies time order in the time series.
string time_column = 3;
- Returns:
- The bytes for timeColumn.
-
getTransformationsList
List<AutoMlForecastingInputs.Transformation> getTransformationsList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformations
AutoMlForecastingInputs.Transformation getTransformations(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformationsCount
int getTransformationsCount()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformationsOrBuilderList
List<? extends AutoMlForecastingInputs.TransformationOrBuilder> getTransformationsOrBuilderList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getTransformationsOrBuilder
AutoMlForecastingInputs.TransformationOrBuilder getTransformationsOrBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
-
getOptimizationObjective
String getOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Returns:
- The optimizationObjective.
-
getOptimizationObjectiveBytes
com.google.protobuf.ByteString getOptimizationObjectiveBytes()
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in `quantiles`.
string optimization_objective = 5;
- Returns:
- The bytes for optimizationObjective.
-
getTrainBudgetMilliNodeHours
long getTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 6;
- Returns:
- The trainBudgetMilliNodeHours.
-
getWeightColumn
String getWeightColumn()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Returns:
- The weightColumn.
-
getWeightColumnBytes
com.google.protobuf.ByteString getWeightColumnBytes()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column = 7;
- Returns:
- The bytes for weightColumn.
-
getTimeSeriesAttributeColumnsList
List<String> getTimeSeriesAttributeColumnsList()
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Returns:
- A list containing the timeSeriesAttributeColumns.
-
getTimeSeriesAttributeColumnsCount
int getTimeSeriesAttributeColumnsCount()
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Returns:
- The count of timeSeriesAttributeColumns.
-
getTimeSeriesAttributeColumns
String getTimeSeriesAttributeColumns(int index)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Parameters:
index
- The index of the element to return.- Returns:
- The timeSeriesAttributeColumns at the given index.
-
getTimeSeriesAttributeColumnsBytes
com.google.protobuf.ByteString getTimeSeriesAttributeColumnsBytes(int index)
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
repeated string time_series_attribute_columns = 19;
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the timeSeriesAttributeColumns at the given index.
-
getUnavailableAtForecastColumnsList
List<String> getUnavailableAtForecastColumnsList()
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Returns:
- A list containing the unavailableAtForecastColumns.
-
getUnavailableAtForecastColumnsCount
int getUnavailableAtForecastColumnsCount()
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Returns:
- The count of unavailableAtForecastColumns.
-
getUnavailableAtForecastColumns
String getUnavailableAtForecastColumns(int index)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Parameters:
index
- The index of the element to return.- Returns:
- The unavailableAtForecastColumns at the given index.
-
getUnavailableAtForecastColumnsBytes
com.google.protobuf.ByteString getUnavailableAtForecastColumnsBytes(int index)
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
repeated string unavailable_at_forecast_columns = 20;
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the unavailableAtForecastColumns at the given index.
-
getAvailableAtForecastColumnsList
List<String> getAvailableAtForecastColumnsList()
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Returns:
- A list containing the availableAtForecastColumns.
-
getAvailableAtForecastColumnsCount
int getAvailableAtForecastColumnsCount()
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Returns:
- The count of availableAtForecastColumns.
-
getAvailableAtForecastColumns
String getAvailableAtForecastColumns(int index)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Parameters:
index
- The index of the element to return.- Returns:
- The availableAtForecastColumns at the given index.
-
getAvailableAtForecastColumnsBytes
com.google.protobuf.ByteString getAvailableAtForecastColumnsBytes(int index)
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
repeated string available_at_forecast_columns = 21;
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the availableAtForecastColumns at the given index.
-
hasDataGranularity
boolean hasDataGranularity()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
- Returns:
- Whether the dataGranularity field is set.
-
getDataGranularity
AutoMlForecastingInputs.Granularity getDataGranularity()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
- Returns:
- The dataGranularity.
-
getDataGranularityOrBuilder
AutoMlForecastingInputs.GranularityOrBuilder getDataGranularityOrBuilder()
Expected difference in time granularity between rows in the data.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
-
getForecastHorizon
long getForecastHorizon()
The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the `data_granularity` field.
int64 forecast_horizon = 23;
- Returns:
- The forecastHorizon.
-
getContextWindow
long getContextWindow()
The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the `data_granularity` field.
int64 context_window = 24;
- Returns:
- The contextWindow.
-
hasExportEvaluatedDataItemsConfig
boolean hasExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
- Returns:
- Whether the exportEvaluatedDataItemsConfig field is set.
-
getExportEvaluatedDataItemsConfig
ExportEvaluatedDataItemsConfig getExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
- Returns:
- The exportEvaluatedDataItemsConfig.
-
getExportEvaluatedDataItemsConfigOrBuilder
ExportEvaluatedDataItemsConfigOrBuilder getExportEvaluatedDataItemsConfigOrBuilder()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
-
getQuantilesList
List<Double> getQuantilesList()
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Returns:
- A list containing the quantiles.
-
getQuantilesCount
int getQuantilesCount()
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Returns:
- The count of quantiles.
-
getQuantiles
double getQuantiles(int index)
Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique.
repeated double quantiles = 16;
- Parameters:
index
- The index of the element to return.- Returns:
- The quantiles at the given index.
-
getValidationOptions
String getValidationOptions()
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Returns:
- The validationOptions.
-
getValidationOptionsBytes
com.google.protobuf.ByteString getValidationOptionsBytes()
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
string validation_options = 17;
- Returns:
- The bytes for validationOptions.
-
getAdditionalExperimentsList
List<String> getAdditionalExperimentsList()
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Returns:
- A list containing the additionalExperiments.
-
getAdditionalExperimentsCount
int getAdditionalExperimentsCount()
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Returns:
- The count of additionalExperiments.
-
getAdditionalExperiments
String getAdditionalExperiments(int index)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Parameters:
index
- The index of the element to return.- Returns:
- The additionalExperiments at the given index.
-
getAdditionalExperimentsBytes
com.google.protobuf.ByteString getAdditionalExperimentsBytes(int index)
Additional experiment flags for the time series forcasting training.
repeated string additional_experiments = 25;
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the additionalExperiments at the given index.
-
-