Interface AutoMlForecastingInputsOrBuilder

  • All Superinterfaces:
    com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
    All Known Implementing Classes:
    AutoMlForecastingInputs, AutoMlForecastingInputs.Builder

    public interface AutoMlForecastingInputsOrBuilder
    extends com.google.protobuf.MessageOrBuilder
    • Method Detail

      • getTargetColumn

        String getTargetColumn()
         The name of the column that the model is to predict.
         
        string target_column = 1;
        Returns:
        The targetColumn.
      • getTargetColumnBytes

        com.google.protobuf.ByteString getTargetColumnBytes()
         The name of the column that the model is to predict.
         
        string target_column = 1;
        Returns:
        The bytes for targetColumn.
      • getTimeSeriesIdentifierColumn

        String getTimeSeriesIdentifierColumn()
         The name of the column that identifies the time series.
         
        string time_series_identifier_column = 2;
        Returns:
        The timeSeriesIdentifierColumn.
      • getTimeSeriesIdentifierColumnBytes

        com.google.protobuf.ByteString getTimeSeriesIdentifierColumnBytes()
         The name of the column that identifies the time series.
         
        string time_series_identifier_column = 2;
        Returns:
        The bytes for timeSeriesIdentifierColumn.
      • getTimeColumn

        String getTimeColumn()
         The name of the column that identifies time order in the time series.
         
        string time_column = 3;
        Returns:
        The timeColumn.
      • getTimeColumnBytes

        com.google.protobuf.ByteString getTimeColumnBytes()
         The name of the column that identifies time order in the time series.
         
        string time_column = 3;
        Returns:
        The bytes for timeColumn.
      • getTransformationsList

        List<AutoMlForecastingInputs.Transformation> getTransformationsList()
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
      • getTransformations

        AutoMlForecastingInputs.Transformation getTransformations​(int index)
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
      • getTransformationsCount

        int getTransformationsCount()
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
      • getTransformationsOrBuilderList

        List<? extends AutoMlForecastingInputs.TransformationOrBuilder> getTransformationsOrBuilderList()
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
      • getTransformationsOrBuilder

        AutoMlForecastingInputs.TransformationOrBuilder getTransformationsOrBuilder​(int index)
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Transformation transformations = 4;
      • getOptimizationObjective

        String getOptimizationObjective()
         Objective function the model is optimizing towards. The training process
         creates a model that optimizes the value of the objective
         function over the validation set.
        
         The supported optimization objectives:
        
           * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
        
           * "minimize-mae" - Minimize mean-absolute error (MAE).
        
           * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
        
           * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE).
        
           * "minimize-wape-mae" - Minimize the combination of weighted absolute
             percentage error (WAPE) and mean-absolute-error (MAE).
        
           * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles
             defined in `quantiles`.
         
        string optimization_objective = 5;
        Returns:
        The optimizationObjective.
      • getOptimizationObjectiveBytes

        com.google.protobuf.ByteString getOptimizationObjectiveBytes()
         Objective function the model is optimizing towards. The training process
         creates a model that optimizes the value of the objective
         function over the validation set.
        
         The supported optimization objectives:
        
           * "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
        
           * "minimize-mae" - Minimize mean-absolute error (MAE).
        
           * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
        
           * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE).
        
           * "minimize-wape-mae" - Minimize the combination of weighted absolute
             percentage error (WAPE) and mean-absolute-error (MAE).
        
           * "minimize-quantile-loss" - Minimize the quantile loss at the quantiles
             defined in `quantiles`.
         
        string optimization_objective = 5;
        Returns:
        The bytes for optimizationObjective.
      • getTrainBudgetMilliNodeHours

        long getTrainBudgetMilliNodeHours()
         Required. The train budget of creating this model, expressed in milli node
         hours i.e. 1,000 value in this field means 1 node hour.
        
         The training cost of the model will not exceed this budget. The final cost
         will be attempted to be close to the budget, though may end up being (even)
         noticeably smaller - at the backend's discretion. This especially may
         happen when further model training ceases to provide any improvements.
        
         If the budget is set to a value known to be insufficient to train a
         model for the given dataset, the training won't be attempted and
         will error.
        
         The train budget must be between 1,000 and 72,000 milli node hours,
         inclusive.
         
        int64 train_budget_milli_node_hours = 6;
        Returns:
        The trainBudgetMilliNodeHours.
      • getWeightColumn

        String getWeightColumn()
         Column name that should be used as the weight column.
         Higher values in this column give more importance to the row
         during model training. The column must have numeric values between 0 and
         10000 inclusively; 0 means the row is ignored for training. If weight
         column field is not set, then all rows are assumed to have equal weight
         of 1.
         
        string weight_column = 7;
        Returns:
        The weightColumn.
      • getWeightColumnBytes

        com.google.protobuf.ByteString getWeightColumnBytes()
         Column name that should be used as the weight column.
         Higher values in this column give more importance to the row
         during model training. The column must have numeric values between 0 and
         10000 inclusively; 0 means the row is ignored for training. If weight
         column field is not set, then all rows are assumed to have equal weight
         of 1.
         
        string weight_column = 7;
        Returns:
        The bytes for weightColumn.
      • getTimeSeriesAttributeColumnsList

        List<String> getTimeSeriesAttributeColumnsList()
         Column names that should be used as attribute columns.
         The value of these columns does not vary as a function of time.
         For example, store ID or item color.
         
        repeated string time_series_attribute_columns = 19;
        Returns:
        A list containing the timeSeriesAttributeColumns.
      • getTimeSeriesAttributeColumnsCount

        int getTimeSeriesAttributeColumnsCount()
         Column names that should be used as attribute columns.
         The value of these columns does not vary as a function of time.
         For example, store ID or item color.
         
        repeated string time_series_attribute_columns = 19;
        Returns:
        The count of timeSeriesAttributeColumns.
      • getTimeSeriesAttributeColumns

        String getTimeSeriesAttributeColumns​(int index)
         Column names that should be used as attribute columns.
         The value of these columns does not vary as a function of time.
         For example, store ID or item color.
         
        repeated string time_series_attribute_columns = 19;
        Parameters:
        index - The index of the element to return.
        Returns:
        The timeSeriesAttributeColumns at the given index.
      • getTimeSeriesAttributeColumnsBytes

        com.google.protobuf.ByteString getTimeSeriesAttributeColumnsBytes​(int index)
         Column names that should be used as attribute columns.
         The value of these columns does not vary as a function of time.
         For example, store ID or item color.
         
        repeated string time_series_attribute_columns = 19;
        Parameters:
        index - The index of the value to return.
        Returns:
        The bytes of the timeSeriesAttributeColumns at the given index.
      • getUnavailableAtForecastColumnsList

        List<String> getUnavailableAtForecastColumnsList()
         Names of columns that are unavailable when a forecast is requested.
         This column contains information for the given entity (identified
         by the time_series_identifier_column) that is unknown before the forecast
         For example, actual weather on a given day.
         
        repeated string unavailable_at_forecast_columns = 20;
        Returns:
        A list containing the unavailableAtForecastColumns.
      • getUnavailableAtForecastColumnsCount

        int getUnavailableAtForecastColumnsCount()
         Names of columns that are unavailable when a forecast is requested.
         This column contains information for the given entity (identified
         by the time_series_identifier_column) that is unknown before the forecast
         For example, actual weather on a given day.
         
        repeated string unavailable_at_forecast_columns = 20;
        Returns:
        The count of unavailableAtForecastColumns.
      • getUnavailableAtForecastColumns

        String getUnavailableAtForecastColumns​(int index)
         Names of columns that are unavailable when a forecast is requested.
         This column contains information for the given entity (identified
         by the time_series_identifier_column) that is unknown before the forecast
         For example, actual weather on a given day.
         
        repeated string unavailable_at_forecast_columns = 20;
        Parameters:
        index - The index of the element to return.
        Returns:
        The unavailableAtForecastColumns at the given index.
      • getUnavailableAtForecastColumnsBytes

        com.google.protobuf.ByteString getUnavailableAtForecastColumnsBytes​(int index)
         Names of columns that are unavailable when a forecast is requested.
         This column contains information for the given entity (identified
         by the time_series_identifier_column) that is unknown before the forecast
         For example, actual weather on a given day.
         
        repeated string unavailable_at_forecast_columns = 20;
        Parameters:
        index - The index of the value to return.
        Returns:
        The bytes of the unavailableAtForecastColumns at the given index.
      • getAvailableAtForecastColumnsList

        List<String> getAvailableAtForecastColumnsList()
         Names of columns that are available and provided when a forecast
         is requested. These columns
         contain information for the given entity (identified by the
         time_series_identifier_column column) that is known at forecast.
         For example, predicted weather for a specific day.
         
        repeated string available_at_forecast_columns = 21;
        Returns:
        A list containing the availableAtForecastColumns.
      • getAvailableAtForecastColumnsCount

        int getAvailableAtForecastColumnsCount()
         Names of columns that are available and provided when a forecast
         is requested. These columns
         contain information for the given entity (identified by the
         time_series_identifier_column column) that is known at forecast.
         For example, predicted weather for a specific day.
         
        repeated string available_at_forecast_columns = 21;
        Returns:
        The count of availableAtForecastColumns.
      • getAvailableAtForecastColumns

        String getAvailableAtForecastColumns​(int index)
         Names of columns that are available and provided when a forecast
         is requested. These columns
         contain information for the given entity (identified by the
         time_series_identifier_column column) that is known at forecast.
         For example, predicted weather for a specific day.
         
        repeated string available_at_forecast_columns = 21;
        Parameters:
        index - The index of the element to return.
        Returns:
        The availableAtForecastColumns at the given index.
      • getAvailableAtForecastColumnsBytes

        com.google.protobuf.ByteString getAvailableAtForecastColumnsBytes​(int index)
         Names of columns that are available and provided when a forecast
         is requested. These columns
         contain information for the given entity (identified by the
         time_series_identifier_column column) that is known at forecast.
         For example, predicted weather for a specific day.
         
        repeated string available_at_forecast_columns = 21;
        Parameters:
        index - The index of the value to return.
        Returns:
        The bytes of the availableAtForecastColumns at the given index.
      • hasDataGranularity

        boolean hasDataGranularity()
         Expected difference in time granularity between rows in the data.
         
        .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
        Returns:
        Whether the dataGranularity field is set.
      • getDataGranularity

        AutoMlForecastingInputs.Granularity getDataGranularity()
         Expected difference in time granularity between rows in the data.
         
        .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
        Returns:
        The dataGranularity.
      • getDataGranularityOrBuilder

        AutoMlForecastingInputs.GranularityOrBuilder getDataGranularityOrBuilder()
         Expected difference in time granularity between rows in the data.
         
        .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlForecastingInputs.Granularity data_granularity = 22;
      • getForecastHorizon

        long getForecastHorizon()
         The amount of time into the future for which forecasted values for the
         target are returned. Expressed in number of units defined by the
         `data_granularity` field.
         
        int64 forecast_horizon = 23;
        Returns:
        The forecastHorizon.
      • getContextWindow

        long getContextWindow()
         The amount of time into the past training and prediction data is used
         for model training and prediction respectively. Expressed in number of
         units defined by the `data_granularity` field.
         
        int64 context_window = 24;
        Returns:
        The contextWindow.
      • hasExportEvaluatedDataItemsConfig

        boolean hasExportEvaluatedDataItemsConfig()
         Configuration for exporting test set predictions to a BigQuery table. If
         this configuration is absent, then the export is not performed.
         
        .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
        Returns:
        Whether the exportEvaluatedDataItemsConfig field is set.
      • getExportEvaluatedDataItemsConfig

        ExportEvaluatedDataItemsConfig getExportEvaluatedDataItemsConfig()
         Configuration for exporting test set predictions to a BigQuery table. If
         this configuration is absent, then the export is not performed.
         
        .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
        Returns:
        The exportEvaluatedDataItemsConfig.
      • getExportEvaluatedDataItemsConfigOrBuilder

        ExportEvaluatedDataItemsConfigOrBuilder getExportEvaluatedDataItemsConfigOrBuilder()
         Configuration for exporting test set predictions to a BigQuery table. If
         this configuration is absent, then the export is not performed.
         
        .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 15;
      • getQuantilesList

        List<Double> getQuantilesList()
         Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to
         5 quantiles are allowed of values between 0 and 1, exclusive. Required if
         the value of optimization_objective is minimize-quantile-loss. Represents
         the percent quantiles to use for that objective. Quantiles must be unique.
         
        repeated double quantiles = 16;
        Returns:
        A list containing the quantiles.
      • getQuantilesCount

        int getQuantilesCount()
         Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to
         5 quantiles are allowed of values between 0 and 1, exclusive. Required if
         the value of optimization_objective is minimize-quantile-loss. Represents
         the percent quantiles to use for that objective. Quantiles must be unique.
         
        repeated double quantiles = 16;
        Returns:
        The count of quantiles.
      • getQuantiles

        double getQuantiles​(int index)
         Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to
         5 quantiles are allowed of values between 0 and 1, exclusive. Required if
         the value of optimization_objective is minimize-quantile-loss. Represents
         the percent quantiles to use for that objective. Quantiles must be unique.
         
        repeated double quantiles = 16;
        Parameters:
        index - The index of the element to return.
        Returns:
        The quantiles at the given index.
      • getValidationOptions

        String getValidationOptions()
         Validation options for the data validation component. The available options
         are:
        
           * "fail-pipeline" - default, will validate against the validation and
              fail the pipeline if it fails.
        
           * "ignore-validation" - ignore the results of the validation and continue
         
        string validation_options = 17;
        Returns:
        The validationOptions.
      • getValidationOptionsBytes

        com.google.protobuf.ByteString getValidationOptionsBytes()
         Validation options for the data validation component. The available options
         are:
        
           * "fail-pipeline" - default, will validate against the validation and
              fail the pipeline if it fails.
        
           * "ignore-validation" - ignore the results of the validation and continue
         
        string validation_options = 17;
        Returns:
        The bytes for validationOptions.
      • getAdditionalExperimentsList

        List<String> getAdditionalExperimentsList()
         Additional experiment flags for the time series forcasting training.
         
        repeated string additional_experiments = 25;
        Returns:
        A list containing the additionalExperiments.
      • getAdditionalExperimentsCount

        int getAdditionalExperimentsCount()
         Additional experiment flags for the time series forcasting training.
         
        repeated string additional_experiments = 25;
        Returns:
        The count of additionalExperiments.
      • getAdditionalExperiments

        String getAdditionalExperiments​(int index)
         Additional experiment flags for the time series forcasting training.
         
        repeated string additional_experiments = 25;
        Parameters:
        index - The index of the element to return.
        Returns:
        The additionalExperiments at the given index.
      • getAdditionalExperimentsBytes

        com.google.protobuf.ByteString getAdditionalExperimentsBytes​(int index)
         Additional experiment flags for the time series forcasting training.
         
        repeated string additional_experiments = 25;
        Parameters:
        index - The index of the value to return.
        Returns:
        The bytes of the additionalExperiments at the given index.