Package com.google.cloud.aiplatform.v1
Class ExplanationMetadata.InputMetadata.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
- com.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Builder
-
- All Implemented Interfaces:
ExplanationMetadata.InputMetadataOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- ExplanationMetadata.InputMetadata
public static final class ExplanationMetadata.InputMetadata.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder> implements ExplanationMetadata.InputMetadataOrBuilder
Metadata of the input of a feature. Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
Protobuf typegoogle.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description ExplanationMetadata.InputMetadata.Builder
addAllEncodedBaselines(Iterable<? extends com.google.protobuf.Value> values)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
addAllIndexFeatureMapping(Iterable<String> values)
A list of feature names for each index in the input tensor.ExplanationMetadata.InputMetadata.Builder
addAllInputBaselines(Iterable<? extends com.google.protobuf.Value> values)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
addEncodedBaselines(int index, com.google.protobuf.Value value)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
addEncodedBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
addEncodedBaselines(com.google.protobuf.Value value)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
addEncodedBaselines(com.google.protobuf.Value.Builder builderForValue)
A list of baselines for the encoded tensor.com.google.protobuf.Value.Builder
addEncodedBaselinesBuilder()
A list of baselines for the encoded tensor.com.google.protobuf.Value.Builder
addEncodedBaselinesBuilder(int index)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
addIndexFeatureMapping(String value)
A list of feature names for each index in the input tensor.ExplanationMetadata.InputMetadata.Builder
addIndexFeatureMappingBytes(com.google.protobuf.ByteString value)
A list of feature names for each index in the input tensor.ExplanationMetadata.InputMetadata.Builder
addInputBaselines(int index, com.google.protobuf.Value value)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
addInputBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
addInputBaselines(com.google.protobuf.Value value)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
addInputBaselines(com.google.protobuf.Value.Builder builderForValue)
Baseline inputs for this feature.com.google.protobuf.Value.Builder
addInputBaselinesBuilder()
Baseline inputs for this feature.com.google.protobuf.Value.Builder
addInputBaselinesBuilder(int index)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
ExplanationMetadata.InputMetadata
build()
ExplanationMetadata.InputMetadata
buildPartial()
ExplanationMetadata.InputMetadata.Builder
clear()
ExplanationMetadata.InputMetadata.Builder
clearDenseShapeTensorName()
Specifies the shape of the values of the input if the input is a sparse representation.ExplanationMetadata.InputMetadata.Builder
clearEncodedBaselines()
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
clearEncodedTensorName()
Encoded tensor is a transformation of the input tensor.ExplanationMetadata.InputMetadata.Builder
clearEncoding()
Defines how the feature is encoded into the input tensor.ExplanationMetadata.InputMetadata.Builder
clearFeatureValueDomain()
The domain details of the input feature value.ExplanationMetadata.InputMetadata.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
ExplanationMetadata.InputMetadata.Builder
clearGroupName()
Name of the group that the input belongs to.ExplanationMetadata.InputMetadata.Builder
clearIndexFeatureMapping()
A list of feature names for each index in the input tensor.ExplanationMetadata.InputMetadata.Builder
clearIndicesTensorName()
Specifies the index of the values of the input tensor.ExplanationMetadata.InputMetadata.Builder
clearInputBaselines()
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
clearInputTensorName()
Name of the input tensor for this feature.ExplanationMetadata.InputMetadata.Builder
clearModality()
Modality of the feature.ExplanationMetadata.InputMetadata.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
ExplanationMetadata.InputMetadata.Builder
clearVisualization()
Visualization configurations for image explanation.ExplanationMetadata.InputMetadata.Builder
clone()
ExplanationMetadata.InputMetadata
getDefaultInstanceForType()
String
getDenseShapeTensorName()
Specifies the shape of the values of the input if the input is a sparse representation.com.google.protobuf.ByteString
getDenseShapeTensorNameBytes()
Specifies the shape of the values of the input if the input is a sparse representation.static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
com.google.protobuf.Descriptors.Descriptor
getDescriptorForType()
com.google.protobuf.Value
getEncodedBaselines(int index)
A list of baselines for the encoded tensor.com.google.protobuf.Value.Builder
getEncodedBaselinesBuilder(int index)
A list of baselines for the encoded tensor.List<com.google.protobuf.Value.Builder>
getEncodedBaselinesBuilderList()
A list of baselines for the encoded tensor.int
getEncodedBaselinesCount()
A list of baselines for the encoded tensor.List<com.google.protobuf.Value>
getEncodedBaselinesList()
A list of baselines for the encoded tensor.com.google.protobuf.ValueOrBuilder
getEncodedBaselinesOrBuilder(int index)
A list of baselines for the encoded tensor.List<? extends com.google.protobuf.ValueOrBuilder>
getEncodedBaselinesOrBuilderList()
A list of baselines for the encoded tensor.String
getEncodedTensorName()
Encoded tensor is a transformation of the input tensor.com.google.protobuf.ByteString
getEncodedTensorNameBytes()
Encoded tensor is a transformation of the input tensor.ExplanationMetadata.InputMetadata.Encoding
getEncoding()
Defines how the feature is encoded into the input tensor.int
getEncodingValue()
Defines how the feature is encoded into the input tensor.ExplanationMetadata.InputMetadata.FeatureValueDomain
getFeatureValueDomain()
The domain details of the input feature value.ExplanationMetadata.InputMetadata.FeatureValueDomain.Builder
getFeatureValueDomainBuilder()
The domain details of the input feature value.ExplanationMetadata.InputMetadata.FeatureValueDomainOrBuilder
getFeatureValueDomainOrBuilder()
The domain details of the input feature value.String
getGroupName()
Name of the group that the input belongs to.com.google.protobuf.ByteString
getGroupNameBytes()
Name of the group that the input belongs to.String
getIndexFeatureMapping(int index)
A list of feature names for each index in the input tensor.com.google.protobuf.ByteString
getIndexFeatureMappingBytes(int index)
A list of feature names for each index in the input tensor.int
getIndexFeatureMappingCount()
A list of feature names for each index in the input tensor.com.google.protobuf.ProtocolStringList
getIndexFeatureMappingList()
A list of feature names for each index in the input tensor.String
getIndicesTensorName()
Specifies the index of the values of the input tensor.com.google.protobuf.ByteString
getIndicesTensorNameBytes()
Specifies the index of the values of the input tensor.com.google.protobuf.Value
getInputBaselines(int index)
Baseline inputs for this feature.com.google.protobuf.Value.Builder
getInputBaselinesBuilder(int index)
Baseline inputs for this feature.List<com.google.protobuf.Value.Builder>
getInputBaselinesBuilderList()
Baseline inputs for this feature.int
getInputBaselinesCount()
Baseline inputs for this feature.List<com.google.protobuf.Value>
getInputBaselinesList()
Baseline inputs for this feature.com.google.protobuf.ValueOrBuilder
getInputBaselinesOrBuilder(int index)
Baseline inputs for this feature.List<? extends com.google.protobuf.ValueOrBuilder>
getInputBaselinesOrBuilderList()
Baseline inputs for this feature.String
getInputTensorName()
Name of the input tensor for this feature.com.google.protobuf.ByteString
getInputTensorNameBytes()
Name of the input tensor for this feature.String
getModality()
Modality of the feature.com.google.protobuf.ByteString
getModalityBytes()
Modality of the feature.ExplanationMetadata.InputMetadata.Visualization
getVisualization()
Visualization configurations for image explanation.ExplanationMetadata.InputMetadata.Visualization.Builder
getVisualizationBuilder()
Visualization configurations for image explanation.ExplanationMetadata.InputMetadata.VisualizationOrBuilder
getVisualizationOrBuilder()
Visualization configurations for image explanation.boolean
hasFeatureValueDomain()
The domain details of the input feature value.boolean
hasVisualization()
Visualization configurations for image explanation.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
boolean
isInitialized()
ExplanationMetadata.InputMetadata.Builder
mergeFeatureValueDomain(ExplanationMetadata.InputMetadata.FeatureValueDomain value)
The domain details of the input feature value.ExplanationMetadata.InputMetadata.Builder
mergeFrom(ExplanationMetadata.InputMetadata other)
ExplanationMetadata.InputMetadata.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ExplanationMetadata.InputMetadata.Builder
mergeFrom(com.google.protobuf.Message other)
ExplanationMetadata.InputMetadata.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
ExplanationMetadata.InputMetadata.Builder
mergeVisualization(ExplanationMetadata.InputMetadata.Visualization value)
Visualization configurations for image explanation.ExplanationMetadata.InputMetadata.Builder
removeEncodedBaselines(int index)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
removeInputBaselines(int index)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
setDenseShapeTensorName(String value)
Specifies the shape of the values of the input if the input is a sparse representation.ExplanationMetadata.InputMetadata.Builder
setDenseShapeTensorNameBytes(com.google.protobuf.ByteString value)
Specifies the shape of the values of the input if the input is a sparse representation.ExplanationMetadata.InputMetadata.Builder
setEncodedBaselines(int index, com.google.protobuf.Value value)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
setEncodedBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
A list of baselines for the encoded tensor.ExplanationMetadata.InputMetadata.Builder
setEncodedTensorName(String value)
Encoded tensor is a transformation of the input tensor.ExplanationMetadata.InputMetadata.Builder
setEncodedTensorNameBytes(com.google.protobuf.ByteString value)
Encoded tensor is a transformation of the input tensor.ExplanationMetadata.InputMetadata.Builder
setEncoding(ExplanationMetadata.InputMetadata.Encoding value)
Defines how the feature is encoded into the input tensor.ExplanationMetadata.InputMetadata.Builder
setEncodingValue(int value)
Defines how the feature is encoded into the input tensor.ExplanationMetadata.InputMetadata.Builder
setFeatureValueDomain(ExplanationMetadata.InputMetadata.FeatureValueDomain value)
The domain details of the input feature value.ExplanationMetadata.InputMetadata.Builder
setFeatureValueDomain(ExplanationMetadata.InputMetadata.FeatureValueDomain.Builder builderForValue)
The domain details of the input feature value.ExplanationMetadata.InputMetadata.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
ExplanationMetadata.InputMetadata.Builder
setGroupName(String value)
Name of the group that the input belongs to.ExplanationMetadata.InputMetadata.Builder
setGroupNameBytes(com.google.protobuf.ByteString value)
Name of the group that the input belongs to.ExplanationMetadata.InputMetadata.Builder
setIndexFeatureMapping(int index, String value)
A list of feature names for each index in the input tensor.ExplanationMetadata.InputMetadata.Builder
setIndicesTensorName(String value)
Specifies the index of the values of the input tensor.ExplanationMetadata.InputMetadata.Builder
setIndicesTensorNameBytes(com.google.protobuf.ByteString value)
Specifies the index of the values of the input tensor.ExplanationMetadata.InputMetadata.Builder
setInputBaselines(int index, com.google.protobuf.Value value)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
setInputBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
Baseline inputs for this feature.ExplanationMetadata.InputMetadata.Builder
setInputTensorName(String value)
Name of the input tensor for this feature.ExplanationMetadata.InputMetadata.Builder
setInputTensorNameBytes(com.google.protobuf.ByteString value)
Name of the input tensor for this feature.ExplanationMetadata.InputMetadata.Builder
setModality(String value)
Modality of the feature.ExplanationMetadata.InputMetadata.Builder
setModalityBytes(com.google.protobuf.ByteString value)
Modality of the feature.ExplanationMetadata.InputMetadata.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
ExplanationMetadata.InputMetadata.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
ExplanationMetadata.InputMetadata.Builder
setVisualization(ExplanationMetadata.InputMetadata.Visualization value)
Visualization configurations for image explanation.ExplanationMetadata.InputMetadata.Builder
setVisualization(ExplanationMetadata.InputMetadata.Visualization.Builder builderForValue)
Visualization configurations for image explanation.-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
clear
public ExplanationMetadata.InputMetadata.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
getDefaultInstanceForType
public ExplanationMetadata.InputMetadata getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public ExplanationMetadata.InputMetadata build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public ExplanationMetadata.InputMetadata buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public ExplanationMetadata.InputMetadata.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
setField
public ExplanationMetadata.InputMetadata.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
clearField
public ExplanationMetadata.InputMetadata.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
clearOneof
public ExplanationMetadata.InputMetadata.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
setRepeatedField
public ExplanationMetadata.InputMetadata.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
addRepeatedField
public ExplanationMetadata.InputMetadata.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
mergeFrom
public ExplanationMetadata.InputMetadata.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<ExplanationMetadata.InputMetadata.Builder>
-
mergeFrom
public ExplanationMetadata.InputMetadata.Builder mergeFrom(ExplanationMetadata.InputMetadata other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
mergeFrom
public ExplanationMetadata.InputMetadata.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<ExplanationMetadata.InputMetadata.Builder>
- Throws:
IOException
-
getInputBaselinesList
public List<com.google.protobuf.Value> getInputBaselinesList()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
- Specified by:
getInputBaselinesList
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getInputBaselinesCount
public int getInputBaselinesCount()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
- Specified by:
getInputBaselinesCount
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getInputBaselines
public com.google.protobuf.Value getInputBaselines(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
- Specified by:
getInputBaselines
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
setInputBaselines
public ExplanationMetadata.InputMetadata.Builder setInputBaselines(int index, com.google.protobuf.Value value)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
setInputBaselines
public ExplanationMetadata.InputMetadata.Builder setInputBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
addInputBaselines
public ExplanationMetadata.InputMetadata.Builder addInputBaselines(com.google.protobuf.Value value)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
addInputBaselines
public ExplanationMetadata.InputMetadata.Builder addInputBaselines(int index, com.google.protobuf.Value value)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
addInputBaselines
public ExplanationMetadata.InputMetadata.Builder addInputBaselines(com.google.protobuf.Value.Builder builderForValue)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
addInputBaselines
public ExplanationMetadata.InputMetadata.Builder addInputBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
addAllInputBaselines
public ExplanationMetadata.InputMetadata.Builder addAllInputBaselines(Iterable<? extends com.google.protobuf.Value> values)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
clearInputBaselines
public ExplanationMetadata.InputMetadata.Builder clearInputBaselines()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
removeInputBaselines
public ExplanationMetadata.InputMetadata.Builder removeInputBaselines(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselinesBuilder
public com.google.protobuf.Value.Builder getInputBaselinesBuilder(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselinesOrBuilder
public com.google.protobuf.ValueOrBuilder getInputBaselinesOrBuilder(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
- Specified by:
getInputBaselinesOrBuilder
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getInputBaselinesOrBuilderList
public List<? extends com.google.protobuf.ValueOrBuilder> getInputBaselinesOrBuilderList()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
- Specified by:
getInputBaselinesOrBuilderList
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
addInputBaselinesBuilder
public com.google.protobuf.Value.Builder addInputBaselinesBuilder()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
addInputBaselinesBuilder
public com.google.protobuf.Value.Builder addInputBaselinesBuilder(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselinesBuilderList
public List<com.google.protobuf.Value.Builder> getInputBaselinesBuilderList()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputTensorName
public String getInputTensorName()
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Specified by:
getInputTensorName
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The inputTensorName.
-
getInputTensorNameBytes
public com.google.protobuf.ByteString getInputTensorNameBytes()
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Specified by:
getInputTensorNameBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The bytes for inputTensorName.
-
setInputTensorName
public ExplanationMetadata.InputMetadata.Builder setInputTensorName(String value)
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Parameters:
value
- The inputTensorName to set.- Returns:
- This builder for chaining.
-
clearInputTensorName
public ExplanationMetadata.InputMetadata.Builder clearInputTensorName()
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Returns:
- This builder for chaining.
-
setInputTensorNameBytes
public ExplanationMetadata.InputMetadata.Builder setInputTensorNameBytes(com.google.protobuf.ByteString value)
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Parameters:
value
- The bytes for inputTensorName to set.- Returns:
- This builder for chaining.
-
getEncodingValue
public int getEncodingValue()
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Specified by:
getEncodingValue
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The enum numeric value on the wire for encoding.
-
setEncodingValue
public ExplanationMetadata.InputMetadata.Builder setEncodingValue(int value)
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Parameters:
value
- The enum numeric value on the wire for encoding to set.- Returns:
- This builder for chaining.
-
getEncoding
public ExplanationMetadata.InputMetadata.Encoding getEncoding()
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Specified by:
getEncoding
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The encoding.
-
setEncoding
public ExplanationMetadata.InputMetadata.Builder setEncoding(ExplanationMetadata.InputMetadata.Encoding value)
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Parameters:
value
- The encoding to set.- Returns:
- This builder for chaining.
-
clearEncoding
public ExplanationMetadata.InputMetadata.Builder clearEncoding()
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Returns:
- This builder for chaining.
-
getModality
public String getModality()
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Specified by:
getModality
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The modality.
-
getModalityBytes
public com.google.protobuf.ByteString getModalityBytes()
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Specified by:
getModalityBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The bytes for modality.
-
setModality
public ExplanationMetadata.InputMetadata.Builder setModality(String value)
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Parameters:
value
- The modality to set.- Returns:
- This builder for chaining.
-
clearModality
public ExplanationMetadata.InputMetadata.Builder clearModality()
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Returns:
- This builder for chaining.
-
setModalityBytes
public ExplanationMetadata.InputMetadata.Builder setModalityBytes(com.google.protobuf.ByteString value)
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Parameters:
value
- The bytes for modality to set.- Returns:
- This builder for chaining.
-
hasFeatureValueDomain
public boolean hasFeatureValueDomain()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
- Specified by:
hasFeatureValueDomain
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- Whether the featureValueDomain field is set.
-
getFeatureValueDomain
public ExplanationMetadata.InputMetadata.FeatureValueDomain getFeatureValueDomain()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
- Specified by:
getFeatureValueDomain
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The featureValueDomain.
-
setFeatureValueDomain
public ExplanationMetadata.InputMetadata.Builder setFeatureValueDomain(ExplanationMetadata.InputMetadata.FeatureValueDomain value)
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
-
setFeatureValueDomain
public ExplanationMetadata.InputMetadata.Builder setFeatureValueDomain(ExplanationMetadata.InputMetadata.FeatureValueDomain.Builder builderForValue)
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
-
mergeFeatureValueDomain
public ExplanationMetadata.InputMetadata.Builder mergeFeatureValueDomain(ExplanationMetadata.InputMetadata.FeatureValueDomain value)
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
-
clearFeatureValueDomain
public ExplanationMetadata.InputMetadata.Builder clearFeatureValueDomain()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
-
getFeatureValueDomainBuilder
public ExplanationMetadata.InputMetadata.FeatureValueDomain.Builder getFeatureValueDomainBuilder()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
-
getFeatureValueDomainOrBuilder
public ExplanationMetadata.InputMetadata.FeatureValueDomainOrBuilder getFeatureValueDomainOrBuilder()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
- Specified by:
getFeatureValueDomainOrBuilder
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getIndicesTensorName
public String getIndicesTensorName()
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Specified by:
getIndicesTensorName
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The indicesTensorName.
-
getIndicesTensorNameBytes
public com.google.protobuf.ByteString getIndicesTensorNameBytes()
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Specified by:
getIndicesTensorNameBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The bytes for indicesTensorName.
-
setIndicesTensorName
public ExplanationMetadata.InputMetadata.Builder setIndicesTensorName(String value)
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Parameters:
value
- The indicesTensorName to set.- Returns:
- This builder for chaining.
-
clearIndicesTensorName
public ExplanationMetadata.InputMetadata.Builder clearIndicesTensorName()
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Returns:
- This builder for chaining.
-
setIndicesTensorNameBytes
public ExplanationMetadata.InputMetadata.Builder setIndicesTensorNameBytes(com.google.protobuf.ByteString value)
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Parameters:
value
- The bytes for indicesTensorName to set.- Returns:
- This builder for chaining.
-
getDenseShapeTensorName
public String getDenseShapeTensorName()
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Specified by:
getDenseShapeTensorName
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The denseShapeTensorName.
-
getDenseShapeTensorNameBytes
public com.google.protobuf.ByteString getDenseShapeTensorNameBytes()
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Specified by:
getDenseShapeTensorNameBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The bytes for denseShapeTensorName.
-
setDenseShapeTensorName
public ExplanationMetadata.InputMetadata.Builder setDenseShapeTensorName(String value)
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Parameters:
value
- The denseShapeTensorName to set.- Returns:
- This builder for chaining.
-
clearDenseShapeTensorName
public ExplanationMetadata.InputMetadata.Builder clearDenseShapeTensorName()
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Returns:
- This builder for chaining.
-
setDenseShapeTensorNameBytes
public ExplanationMetadata.InputMetadata.Builder setDenseShapeTensorNameBytes(com.google.protobuf.ByteString value)
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Parameters:
value
- The bytes for denseShapeTensorName to set.- Returns:
- This builder for chaining.
-
getIndexFeatureMappingList
public com.google.protobuf.ProtocolStringList getIndexFeatureMappingList()
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Specified by:
getIndexFeatureMappingList
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- A list containing the indexFeatureMapping.
-
getIndexFeatureMappingCount
public int getIndexFeatureMappingCount()
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Specified by:
getIndexFeatureMappingCount
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The count of indexFeatureMapping.
-
getIndexFeatureMapping
public String getIndexFeatureMapping(int index)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Specified by:
getIndexFeatureMapping
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The indexFeatureMapping at the given index.
-
getIndexFeatureMappingBytes
public com.google.protobuf.ByteString getIndexFeatureMappingBytes(int index)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Specified by:
getIndexFeatureMappingBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the indexFeatureMapping at the given index.
-
setIndexFeatureMapping
public ExplanationMetadata.InputMetadata.Builder setIndexFeatureMapping(int index, String value)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Parameters:
index
- The index to set the value at.value
- The indexFeatureMapping to set.- Returns:
- This builder for chaining.
-
addIndexFeatureMapping
public ExplanationMetadata.InputMetadata.Builder addIndexFeatureMapping(String value)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Parameters:
value
- The indexFeatureMapping to add.- Returns:
- This builder for chaining.
-
addAllIndexFeatureMapping
public ExplanationMetadata.InputMetadata.Builder addAllIndexFeatureMapping(Iterable<String> values)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Parameters:
values
- The indexFeatureMapping to add.- Returns:
- This builder for chaining.
-
clearIndexFeatureMapping
public ExplanationMetadata.InputMetadata.Builder clearIndexFeatureMapping()
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Returns:
- This builder for chaining.
-
addIndexFeatureMappingBytes
public ExplanationMetadata.InputMetadata.Builder addIndexFeatureMappingBytes(com.google.protobuf.ByteString value)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Parameters:
value
- The bytes of the indexFeatureMapping to add.- Returns:
- This builder for chaining.
-
getEncodedTensorName
public String getEncodedTensorName()
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Specified by:
getEncodedTensorName
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The encodedTensorName.
-
getEncodedTensorNameBytes
public com.google.protobuf.ByteString getEncodedTensorNameBytes()
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Specified by:
getEncodedTensorNameBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The bytes for encodedTensorName.
-
setEncodedTensorName
public ExplanationMetadata.InputMetadata.Builder setEncodedTensorName(String value)
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Parameters:
value
- The encodedTensorName to set.- Returns:
- This builder for chaining.
-
clearEncodedTensorName
public ExplanationMetadata.InputMetadata.Builder clearEncodedTensorName()
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Returns:
- This builder for chaining.
-
setEncodedTensorNameBytes
public ExplanationMetadata.InputMetadata.Builder setEncodedTensorNameBytes(com.google.protobuf.ByteString value)
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Parameters:
value
- The bytes for encodedTensorName to set.- Returns:
- This builder for chaining.
-
getEncodedBaselinesList
public List<com.google.protobuf.Value> getEncodedBaselinesList()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
- Specified by:
getEncodedBaselinesList
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getEncodedBaselinesCount
public int getEncodedBaselinesCount()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
- Specified by:
getEncodedBaselinesCount
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getEncodedBaselines
public com.google.protobuf.Value getEncodedBaselines(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
- Specified by:
getEncodedBaselines
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
setEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder setEncodedBaselines(int index, com.google.protobuf.Value value)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
setEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder setEncodedBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
addEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder addEncodedBaselines(com.google.protobuf.Value value)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
addEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder addEncodedBaselines(int index, com.google.protobuf.Value value)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
addEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder addEncodedBaselines(com.google.protobuf.Value.Builder builderForValue)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
addEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder addEncodedBaselines(int index, com.google.protobuf.Value.Builder builderForValue)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
addAllEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder addAllEncodedBaselines(Iterable<? extends com.google.protobuf.Value> values)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
clearEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder clearEncodedBaselines()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
removeEncodedBaselines
public ExplanationMetadata.InputMetadata.Builder removeEncodedBaselines(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselinesBuilder
public com.google.protobuf.Value.Builder getEncodedBaselinesBuilder(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselinesOrBuilder
public com.google.protobuf.ValueOrBuilder getEncodedBaselinesOrBuilder(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
- Specified by:
getEncodedBaselinesOrBuilder
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getEncodedBaselinesOrBuilderList
public List<? extends com.google.protobuf.ValueOrBuilder> getEncodedBaselinesOrBuilderList()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
- Specified by:
getEncodedBaselinesOrBuilderList
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
addEncodedBaselinesBuilder
public com.google.protobuf.Value.Builder addEncodedBaselinesBuilder()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
addEncodedBaselinesBuilder
public com.google.protobuf.Value.Builder addEncodedBaselinesBuilder(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselinesBuilderList
public List<com.google.protobuf.Value.Builder> getEncodedBaselinesBuilderList()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
hasVisualization
public boolean hasVisualization()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
- Specified by:
hasVisualization
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- Whether the visualization field is set.
-
getVisualization
public ExplanationMetadata.InputMetadata.Visualization getVisualization()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
- Specified by:
getVisualization
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The visualization.
-
setVisualization
public ExplanationMetadata.InputMetadata.Builder setVisualization(ExplanationMetadata.InputMetadata.Visualization value)
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
-
setVisualization
public ExplanationMetadata.InputMetadata.Builder setVisualization(ExplanationMetadata.InputMetadata.Visualization.Builder builderForValue)
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
-
mergeVisualization
public ExplanationMetadata.InputMetadata.Builder mergeVisualization(ExplanationMetadata.InputMetadata.Visualization value)
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
-
clearVisualization
public ExplanationMetadata.InputMetadata.Builder clearVisualization()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
-
getVisualizationBuilder
public ExplanationMetadata.InputMetadata.Visualization.Builder getVisualizationBuilder()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
-
getVisualizationOrBuilder
public ExplanationMetadata.InputMetadata.VisualizationOrBuilder getVisualizationOrBuilder()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
- Specified by:
getVisualizationOrBuilder
in interfaceExplanationMetadata.InputMetadataOrBuilder
-
getGroupName
public String getGroupName()
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Specified by:
getGroupName
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The groupName.
-
getGroupNameBytes
public com.google.protobuf.ByteString getGroupNameBytes()
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Specified by:
getGroupNameBytes
in interfaceExplanationMetadata.InputMetadataOrBuilder
- Returns:
- The bytes for groupName.
-
setGroupName
public ExplanationMetadata.InputMetadata.Builder setGroupName(String value)
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Parameters:
value
- The groupName to set.- Returns:
- This builder for chaining.
-
clearGroupName
public ExplanationMetadata.InputMetadata.Builder clearGroupName()
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Returns:
- This builder for chaining.
-
setGroupNameBytes
public ExplanationMetadata.InputMetadata.Builder setGroupNameBytes(com.google.protobuf.ByteString value)
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Parameters:
value
- The bytes for groupName to set.- Returns:
- This builder for chaining.
-
setUnknownFields
public final ExplanationMetadata.InputMetadata.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
mergeUnknownFields
public final ExplanationMetadata.InputMetadata.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.InputMetadata.Builder>
-
-