Package com.google.cloud.aiplatform.v1
Interface ExplanationMetadata.InputMetadataOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ExplanationMetadata.InputMetadata
,ExplanationMetadata.InputMetadata.Builder
- Enclosing class:
- ExplanationMetadata
public static interface ExplanationMetadata.InputMetadataOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description String
getDenseShapeTensorName()
Specifies the shape of the values of the input if the input is a sparse representation.com.google.protobuf.ByteString
getDenseShapeTensorNameBytes()
Specifies the shape of the values of the input if the input is a sparse representation.com.google.protobuf.Value
getEncodedBaselines(int index)
A list of baselines for the encoded tensor.int
getEncodedBaselinesCount()
A list of baselines for the encoded tensor.List<com.google.protobuf.Value>
getEncodedBaselinesList()
A list of baselines for the encoded tensor.com.google.protobuf.ValueOrBuilder
getEncodedBaselinesOrBuilder(int index)
A list of baselines for the encoded tensor.List<? extends com.google.protobuf.ValueOrBuilder>
getEncodedBaselinesOrBuilderList()
A list of baselines for the encoded tensor.String
getEncodedTensorName()
Encoded tensor is a transformation of the input tensor.com.google.protobuf.ByteString
getEncodedTensorNameBytes()
Encoded tensor is a transformation of the input tensor.ExplanationMetadata.InputMetadata.Encoding
getEncoding()
Defines how the feature is encoded into the input tensor.int
getEncodingValue()
Defines how the feature is encoded into the input tensor.ExplanationMetadata.InputMetadata.FeatureValueDomain
getFeatureValueDomain()
The domain details of the input feature value.ExplanationMetadata.InputMetadata.FeatureValueDomainOrBuilder
getFeatureValueDomainOrBuilder()
The domain details of the input feature value.String
getGroupName()
Name of the group that the input belongs to.com.google.protobuf.ByteString
getGroupNameBytes()
Name of the group that the input belongs to.String
getIndexFeatureMapping(int index)
A list of feature names for each index in the input tensor.com.google.protobuf.ByteString
getIndexFeatureMappingBytes(int index)
A list of feature names for each index in the input tensor.int
getIndexFeatureMappingCount()
A list of feature names for each index in the input tensor.List<String>
getIndexFeatureMappingList()
A list of feature names for each index in the input tensor.String
getIndicesTensorName()
Specifies the index of the values of the input tensor.com.google.protobuf.ByteString
getIndicesTensorNameBytes()
Specifies the index of the values of the input tensor.com.google.protobuf.Value
getInputBaselines(int index)
Baseline inputs for this feature.int
getInputBaselinesCount()
Baseline inputs for this feature.List<com.google.protobuf.Value>
getInputBaselinesList()
Baseline inputs for this feature.com.google.protobuf.ValueOrBuilder
getInputBaselinesOrBuilder(int index)
Baseline inputs for this feature.List<? extends com.google.protobuf.ValueOrBuilder>
getInputBaselinesOrBuilderList()
Baseline inputs for this feature.String
getInputTensorName()
Name of the input tensor for this feature.com.google.protobuf.ByteString
getInputTensorNameBytes()
Name of the input tensor for this feature.String
getModality()
Modality of the feature.com.google.protobuf.ByteString
getModalityBytes()
Modality of the feature.ExplanationMetadata.InputMetadata.Visualization
getVisualization()
Visualization configurations for image explanation.ExplanationMetadata.InputMetadata.VisualizationOrBuilder
getVisualizationOrBuilder()
Visualization configurations for image explanation.boolean
hasFeatureValueDomain()
The domain details of the input feature value.boolean
hasVisualization()
Visualization configurations for image explanation.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getInputBaselinesList
List<com.google.protobuf.Value> getInputBaselinesList()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselines
com.google.protobuf.Value getInputBaselines(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselinesCount
int getInputBaselinesCount()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselinesOrBuilderList
List<? extends com.google.protobuf.ValueOrBuilder> getInputBaselinesOrBuilderList()
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputBaselinesOrBuilder
com.google.protobuf.ValueOrBuilder getInputBaselinesOrBuilder(int index)
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the [instance][google.cloud.aiplatform.v1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated .google.protobuf.Value input_baselines = 1;
-
getInputTensorName
String getInputTensorName()
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Returns:
- The inputTensorName.
-
getInputTensorNameBytes
com.google.protobuf.ByteString getInputTensorNameBytes()
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
- Returns:
- The bytes for inputTensorName.
-
getEncodingValue
int getEncodingValue()
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Returns:
- The enum numeric value on the wire for encoding.
-
getEncoding
ExplanationMetadata.InputMetadata.Encoding getEncoding()
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
- Returns:
- The encoding.
-
getModality
String getModality()
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Returns:
- The modality.
-
getModalityBytes
com.google.protobuf.ByteString getModalityBytes()
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
- Returns:
- The bytes for modality.
-
hasFeatureValueDomain
boolean hasFeatureValueDomain()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
- Returns:
- Whether the featureValueDomain field is set.
-
getFeatureValueDomain
ExplanationMetadata.InputMetadata.FeatureValueDomain getFeatureValueDomain()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
- Returns:
- The featureValueDomain.
-
getFeatureValueDomainOrBuilder
ExplanationMetadata.InputMetadata.FeatureValueDomainOrBuilder getFeatureValueDomainOrBuilder()
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
-
getIndicesTensorName
String getIndicesTensorName()
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Returns:
- The indicesTensorName.
-
getIndicesTensorNameBytes
com.google.protobuf.ByteString getIndicesTensorNameBytes()
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
- Returns:
- The bytes for indicesTensorName.
-
getDenseShapeTensorName
String getDenseShapeTensorName()
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Returns:
- The denseShapeTensorName.
-
getDenseShapeTensorNameBytes
com.google.protobuf.ByteString getDenseShapeTensorNameBytes()
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
- Returns:
- The bytes for denseShapeTensorName.
-
getIndexFeatureMappingList
List<String> getIndexFeatureMappingList()
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Returns:
- A list containing the indexFeatureMapping.
-
getIndexFeatureMappingCount
int getIndexFeatureMappingCount()
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Returns:
- The count of indexFeatureMapping.
-
getIndexFeatureMapping
String getIndexFeatureMapping(int index)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Parameters:
index
- The index of the element to return.- Returns:
- The indexFeatureMapping at the given index.
-
getIndexFeatureMappingBytes
com.google.protobuf.ByteString getIndexFeatureMappingBytes(int index)
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the indexFeatureMapping at the given index.
-
getEncodedTensorName
String getEncodedTensorName()
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Returns:
- The encodedTensorName.
-
getEncodedTensorNameBytes
com.google.protobuf.ByteString getEncodedTensorNameBytes()
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
- Returns:
- The bytes for encodedTensorName.
-
getEncodedBaselinesList
List<com.google.protobuf.Value> getEncodedBaselinesList()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselines
com.google.protobuf.Value getEncodedBaselines(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselinesCount
int getEncodedBaselinesCount()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselinesOrBuilderList
List<? extends com.google.protobuf.ValueOrBuilder> getEncodedBaselinesOrBuilderList()
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
getEncodedBaselinesOrBuilder
com.google.protobuf.ValueOrBuilder getEncodedBaselinesOrBuilder(int index)
A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
-
hasVisualization
boolean hasVisualization()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
- Returns:
- Whether the visualization field is set.
-
getVisualization
ExplanationMetadata.InputMetadata.Visualization getVisualization()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
- Returns:
- The visualization.
-
getVisualizationOrBuilder
ExplanationMetadata.InputMetadata.VisualizationOrBuilder getVisualizationOrBuilder()
Visualization configurations for image explanation.
.google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
-
getGroupName
String getGroupName()
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Returns:
- The groupName.
-
getGroupNameBytes
com.google.protobuf.ByteString getGroupNameBytes()
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [Attribution.feature_attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions], keyed by the group name.
string group_name = 12;
- Returns:
- The bytes for groupName.
-
-