Class InputConfig.Builder

  • All Implemented Interfaces:
    InputConfigOrBuilder, com.google.protobuf.Message.Builder, com.google.protobuf.MessageLite.Builder, com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder, Cloneable
    Enclosing class:
    InputConfig

    public static final class InputConfig.Builder
    extends com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
    implements InputConfigOrBuilder
     Input configuration for ImportData Action.
    
     The format of input depends on dataset_metadata the Dataset into which
     the import is happening has. As input source the
     [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source]
     is expected, unless specified otherwise. Additionally any input .CSV file
     by itself must be 100MB or smaller, unless specified otherwise.
     If an "example" file (that is, image, video etc.) with identical content
     (even if it had different GCS_FILE_PATH) is mentioned multiple times, then
     its label, bounding boxes etc. are appended. The same file should be always
     provided with the same ML_USE and GCS_FILE_PATH, if it is not, then
     these values are nondeterministically selected from the given ones.
    
     The formats are represented in EBNF with commas being literal and with
     non-terminal symbols defined near the end of this comment. The formats are:
    
      *  For Image Classification:
             CSV file(s) with each line in format:
               ML_USE,GCS_FILE_PATH,LABEL,LABEL,...
               GCS_FILE_PATH leads to image of up to 30MB in size. Supported
               extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO
               For MULTICLASS classification type, at most one LABEL is allowed
               per image. If an image has not yet been labeled, then it should be
               mentioned just once with no LABEL.
             Some sample rows:
               TRAIN,gs://folder/image1.jpg,daisy
               TEST,gs://folder/image2.jpg,dandelion,tulip,rose
               UNASSIGNED,gs://folder/image3.jpg,daisy
               UNASSIGNED,gs://folder/image4.jpg
    
      *  For Image Object Detection:
             CSV file(s) with each line in format:
               ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,)
               GCS_FILE_PATH leads to image of up to 30MB in size. Supported
               extensions: .JPEG, .GIF, .PNG.
               Each image is assumed to be exhaustively labeled. The minimum
               allowed BOUNDING_BOX edge length is 0.01, and no more than 500
               BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined
               per line). If an image has not yet been labeled, then it should be
               mentioned just once with no LABEL and the ",,,,,,," in place of the
               BOUNDING_BOX. For images which are known to not contain any
               bounding boxes, they should be labelled explictly as
               "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the
               BOUNDING_BOX.
             Sample rows:
               TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,,
               TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,,
               UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3
               TEST,gs://folder/im3.png,,,,,,,,,
               TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,,
    
      *  For Video Classification:
             CSV file(s) with each line in format:
               ML_USE,GCS_FILE_PATH
               where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH
               should lead to another .csv file which describes examples that have
               given ML_USE, using the following row format:
               GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,)
               Here GCS_FILE_PATH leads to a video of up to 50GB in size and up
               to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
               TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
               length of the video, and end has to be after the start. Any segment
               of a video which has one or more labels on it, is considered a
               hard negative for all other labels. Any segment with no labels on
               it is considered to be unknown. If a whole video is unknown, then
               it shuold be mentioned just once with ",," in place of LABEL,
               TIME_SEGMENT_START,TIME_SEGMENT_END.
             Sample top level CSV file:
               TRAIN,gs://folder/train_videos.csv
               TEST,gs://folder/test_videos.csv
               UNASSIGNED,gs://folder/other_videos.csv
             Sample rows of a CSV file for a particular ML_USE:
               gs://folder/video1.avi,car,120,180.000021
               gs://folder/video1.avi,bike,150,180.000021
               gs://folder/vid2.avi,car,0,60.5
               gs://folder/vid3.avi,,,
    
      *  For Video Object Tracking:
             CSV file(s) with each line in format:
               ML_USE,GCS_FILE_PATH
               where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH
               should lead to another .csv file which describes examples that have
               given ML_USE, using one of the following row format:
               GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX
               or
               GCS_FILE_PATH,,,,,,,,,,
               Here GCS_FILE_PATH leads to a video of up to 50GB in size and up
               to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
               Providing INSTANCE_IDs can help to obtain a better model. When
               a specific labeled entity leaves the video frame, and shows up
               afterwards it is not required, albeit preferable, that the same
               INSTANCE_ID is given to it.
               TIMESTAMP must be within the length of the video, the
               BOUNDING_BOX is assumed to be drawn on the closest video's frame
               to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected
               to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per
               frame are allowed. If a whole video is unknown, then it should be
               mentioned just once with ",,,,,,,,,," in place of LABEL,
               [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX.
             Sample top level CSV file:
               TRAIN,gs://folder/train_videos.csv
               TEST,gs://folder/test_videos.csv
               UNASSIGNED,gs://folder/other_videos.csv
             Seven sample rows of a CSV file for a particular ML_USE:
               gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9
               gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9
               gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3
               gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,,
               gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,,
               gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,,
               gs://folder/video2.avi,,,,,,,,,,,
      *  For Text Extraction:
             CSV file(s) with each line in format:
               ML_USE,GCS_FILE_PATH
               GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which
               either imports text in-line or as documents. Any given
               .JSONL file must be 100MB or smaller.
               The in-line .JSONL file contains, per line, a proto that wraps a
               TextSnippet proto (in json representation) followed by one or more
               AnnotationPayload protos (called annotations), which have
               display_name and text_extraction detail populated. The given text
               is expected to be annotated exhaustively, for example, if you look
               for animals and text contains "dolphin" that is not labeled, then
               "dolphin" is assumed to not be an animal. Any given text snippet
               content must be 10KB or smaller, and also be UTF-8 NFC encoded
               (ASCII already is).
               The document .JSONL file contains, per line, a proto that wraps a
               Document proto. The Document proto must have either document_text
               or input_config set. In document_text case, the Document proto may
               also contain the spatial information of the document, including
               layout, document dimension and page number. In input_config case,
               only PDF documents are supported now, and each document may be up
               to 2MB large. Currently, annotations on documents cannot be
               specified at import.
             Three sample CSV rows:
               TRAIN,gs://folder/file1.jsonl
               VALIDATE,gs://folder/file2.jsonl
               TEST,gs://folder/file3.jsonl
             Sample in-line JSON Lines file for entity extraction (presented here
             with artificial line breaks, but the only actual line break is
             denoted by \n).:
               {
                 "document": {
                   "document_text": {"content": "dog cat"}
                   "layout": [
                     {
                       "text_segment": {
                         "start_offset": 0,
                         "end_offset": 3,
                       },
                       "page_number": 1,
                       "bounding_poly": {
                         "normalized_vertices": [
                           {"x": 0.1, "y": 0.1},
                           {"x": 0.1, "y": 0.3},
                           {"x": 0.3, "y": 0.3},
                           {"x": 0.3, "y": 0.1},
                         ],
                       },
                       "text_segment_type": TOKEN,
                     },
                     {
                       "text_segment": {
                         "start_offset": 4,
                         "end_offset": 7,
                       },
                       "page_number": 1,
                       "bounding_poly": {
                         "normalized_vertices": [
                           {"x": 0.4, "y": 0.1},
                           {"x": 0.4, "y": 0.3},
                           {"x": 0.8, "y": 0.3},
                           {"x": 0.8, "y": 0.1},
                         ],
                       },
                       "text_segment_type": TOKEN,
                     }
    
                   ],
                   "document_dimensions": {
                     "width": 8.27,
                     "height": 11.69,
                     "unit": INCH,
                   }
                   "page_count": 1,
                 },
                 "annotations": [
                   {
                     "display_name": "animal",
                     "text_extraction": {"text_segment": {"start_offset": 0,
                     "end_offset": 3}}
                   },
                   {
                     "display_name": "animal",
                     "text_extraction": {"text_segment": {"start_offset": 4,
                     "end_offset": 7}}
                   }
                 ],
               }\n
               {
                  "text_snippet": {
                    "content": "This dog is good."
                  },
                  "annotations": [
                    {
                      "display_name": "animal",
                      "text_extraction": {
                        "text_segment": {"start_offset": 5, "end_offset": 8}
                      }
                    }
                  ]
               }
             Sample document JSON Lines file (presented here with artificial line
             breaks, but the only actual line break is denoted by \n).:
               {
                 "document": {
                   "input_config": {
                     "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
                     }
                   }
                 }
               }\n
               {
                 "document": {
                   "input_config": {
                     "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ]
                     }
                   }
                 }
               }
    
      *  For Text Classification:
             CSV file(s) with each line in format:
               ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,...
               TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If
               the column content is a valid gcs file path, i.e. prefixed by
               "gs://", it will be treated as a GCS_FILE_PATH, else if the content
               is enclosed within double quotes (""), it is
               treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path
               must lead to a .txt file with UTF-8 encoding, for example,
               "gs://folder/content.txt", and the content in it is extracted
               as a text snippet. In TEXT_SNIPPET case, the column content
               excluding quotes is treated as to be imported text snippet. In
               both cases, the text snippet/file size must be within 128kB.
               Maximum 100 unique labels are allowed per CSV row.
             Sample rows:
               TRAIN,"They have bad food and very rude",RudeService,BadFood
               TRAIN,gs://folder/content.txt,SlowService
               TEST,"Typically always bad service there.",RudeService
               VALIDATE,"Stomach ache to go.",BadFood
    
      *  For Text Sentiment:
             CSV file(s) with each line in format:
               ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT
               TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If
               the column content is a valid gcs file path, that is, prefixed by
               "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated
               as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path
               must lead to a .txt file with UTF-8 encoding, for example,
               "gs://folder/content.txt", and the content in it is extracted
               as a text snippet. In TEXT_SNIPPET case, the column content itself
               is treated as to be imported text snippet. In both cases, the
               text snippet must be up to 500 characters long.
             Sample rows:
               TRAIN,"@freewrytin this is way too good for your product",2
               TRAIN,"I need this product so bad",3
               TEST,"Thank you for this product.",4
               VALIDATE,gs://folder/content.txt,2
    
       *  For Tables:
             Either
             [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
    
     [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source]
             can be used. All inputs is concatenated into a single
    
     [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_name]
             For gcs_source:
               CSV file(s), where the first row of the first file is the header,
               containing unique column names. If the first row of a subsequent
               file is the same as the header, then it is also treated as a
               header. All other rows contain values for the corresponding
               columns.
               Each .CSV file by itself must be 10GB or smaller, and their total
               size must be 100GB or smaller.
               First three sample rows of a CSV file:
               "Id","First Name","Last Name","Dob","Addresses"
    
     "1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
    
     "2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
             For bigquery_source:
               An URI of a BigQuery table. The user data size of the BigQuery
               table must be 100GB or smaller.
             An imported table must have between 2 and 1,000 columns, inclusive,
             and between 1000 and 100,000,000 rows, inclusive. There are at most 5
             import data running in parallel.
      Definitions:
      ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED"
               Describes how the given example (file) should be used for model
               training. "UNASSIGNED" can be used when user has no preference.
      GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png".
      LABEL = A display name of an object on an image, video etc., e.g. "dog".
              Must be up to 32 characters long and can consist only of ASCII
              Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9.
              For each label an AnnotationSpec is created which display_name
              becomes the label; AnnotationSpecs are given back in predictions.
      INSTANCE_ID = A positive integer that identifies a specific instance of a
                    labeled entity on an example. Used e.g. to track two cars on
                    a video while being able to tell apart which one is which.
      BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,,
                     A rectangle parallel to the frame of the example (image,
                     video). If 4 vertices are given they are connected by edges
                     in the order provided, if 2 are given they are recognized
                     as diagonally opposite vertices of the rectangle.
      VERTEX = COORDINATE,COORDINATE
               First coordinate is horizontal (x), the second is vertical (y).
      COORDINATE = A float in 0 to 1 range, relative to total length of
                   image or video in given dimension. For fractions the
                   leading non-decimal 0 can be omitted (i.e. 0.3 = .3).
                   Point 0,0 is in top left.
      TIME_SEGMENT_START = TIME_OFFSET
                           Expresses a beginning, inclusive, of a time segment
                           within an example that has a time dimension
                           (e.g. video).
      TIME_SEGMENT_END = TIME_OFFSET
                         Expresses an end, exclusive, of a time segment within
                         an example that has a time dimension (e.g. video).
      TIME_OFFSET = A number of seconds as measured from the start of an
                    example (e.g. video). Fractions are allowed, up to a
                    microsecond precision. "inf" is allowed, and it means the end
                    of the example.
      TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
                     double quotes ("").
      SENTIMENT = An integer between 0 and
                  Dataset.text_sentiment_dataset_metadata.sentiment_max
                  (inclusive). Describes the ordinal of the sentiment - higher
                  value means a more positive sentiment. All the values are
                  completely relative, i.e. neither 0 needs to mean a negative or
                  neutral sentiment nor sentiment_max needs to mean a positive one
                  - it is just required that 0 is the least positive sentiment
                  in the data, and sentiment_max is the  most positive one.
                  The SENTIMENT shouldn't be confused with "score" or "magnitude"
                  from the previous Natural Language Sentiment Analysis API.
                  All SENTIMENT values between 0 and sentiment_max must be
                  represented in the imported data. On prediction the same 0 to
                  sentiment_max range will be used. The difference between
                  neighboring sentiment values needs not to be uniform, e.g. 1 and
                  2 may be similar whereas the difference between 2 and 3 may be
                  huge.
    
      Errors:
      If any of the provided CSV files can't be parsed or if more than certain
      percent of CSV rows cannot be processed then the operation fails and
      nothing is imported. Regardless of overall success or failure the per-row
      failures, up to a certain count cap, is listed in
      Operation.metadata.partial_failures.
     
    Protobuf type google.cloud.automl.v1beta1.InputConfig
    • Method Detail

      • getDescriptor

        public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
      • internalGetMapField

        protected com.google.protobuf.MapField internalGetMapField​(int number)
        Overrides:
        internalGetMapField in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • internalGetMutableMapField

        protected com.google.protobuf.MapField internalGetMutableMapField​(int number)
        Overrides:
        internalGetMutableMapField in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • internalGetFieldAccessorTable

        protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
        Specified by:
        internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • clear

        public InputConfig.Builder clear()
        Specified by:
        clear in interface com.google.protobuf.Message.Builder
        Specified by:
        clear in interface com.google.protobuf.MessageLite.Builder
        Overrides:
        clear in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • getDescriptorForType

        public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
        Specified by:
        getDescriptorForType in interface com.google.protobuf.Message.Builder
        Specified by:
        getDescriptorForType in interface com.google.protobuf.MessageOrBuilder
        Overrides:
        getDescriptorForType in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • getDefaultInstanceForType

        public InputConfig getDefaultInstanceForType()
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder
      • build

        public InputConfig build()
        Specified by:
        build in interface com.google.protobuf.Message.Builder
        Specified by:
        build in interface com.google.protobuf.MessageLite.Builder
      • buildPartial

        public InputConfig buildPartial()
        Specified by:
        buildPartial in interface com.google.protobuf.Message.Builder
        Specified by:
        buildPartial in interface com.google.protobuf.MessageLite.Builder
      • clone

        public InputConfig.Builder clone()
        Specified by:
        clone in interface com.google.protobuf.Message.Builder
        Specified by:
        clone in interface com.google.protobuf.MessageLite.Builder
        Overrides:
        clone in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • setField

        public InputConfig.Builder setField​(com.google.protobuf.Descriptors.FieldDescriptor field,
                                            Object value)
        Specified by:
        setField in interface com.google.protobuf.Message.Builder
        Overrides:
        setField in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • clearField

        public InputConfig.Builder clearField​(com.google.protobuf.Descriptors.FieldDescriptor field)
        Specified by:
        clearField in interface com.google.protobuf.Message.Builder
        Overrides:
        clearField in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • clearOneof

        public InputConfig.Builder clearOneof​(com.google.protobuf.Descriptors.OneofDescriptor oneof)
        Specified by:
        clearOneof in interface com.google.protobuf.Message.Builder
        Overrides:
        clearOneof in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • setRepeatedField

        public InputConfig.Builder setRepeatedField​(com.google.protobuf.Descriptors.FieldDescriptor field,
                                                    int index,
                                                    Object value)
        Specified by:
        setRepeatedField in interface com.google.protobuf.Message.Builder
        Overrides:
        setRepeatedField in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • addRepeatedField

        public InputConfig.Builder addRepeatedField​(com.google.protobuf.Descriptors.FieldDescriptor field,
                                                    Object value)
        Specified by:
        addRepeatedField in interface com.google.protobuf.Message.Builder
        Overrides:
        addRepeatedField in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • mergeFrom

        public InputConfig.Builder mergeFrom​(com.google.protobuf.Message other)
        Specified by:
        mergeFrom in interface com.google.protobuf.Message.Builder
        Overrides:
        mergeFrom in class com.google.protobuf.AbstractMessage.Builder<InputConfig.Builder>
      • isInitialized

        public final boolean isInitialized()
        Specified by:
        isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
        Overrides:
        isInitialized in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • mergeFrom

        public InputConfig.Builder mergeFrom​(com.google.protobuf.CodedInputStream input,
                                             com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                      throws IOException
        Specified by:
        mergeFrom in interface com.google.protobuf.Message.Builder
        Specified by:
        mergeFrom in interface com.google.protobuf.MessageLite.Builder
        Overrides:
        mergeFrom in class com.google.protobuf.AbstractMessage.Builder<InputConfig.Builder>
        Throws:
        IOException
      • hasGcsSource

        public boolean hasGcsSource()
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
        Specified by:
        hasGcsSource in interface InputConfigOrBuilder
        Returns:
        Whether the gcsSource field is set.
      • getGcsSource

        public GcsSource getGcsSource()
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
        Specified by:
        getGcsSource in interface InputConfigOrBuilder
        Returns:
        The gcsSource.
      • setGcsSource

        public InputConfig.Builder setGcsSource​(GcsSource value)
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
      • setGcsSource

        public InputConfig.Builder setGcsSource​(GcsSource.Builder builderForValue)
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
      • mergeGcsSource

        public InputConfig.Builder mergeGcsSource​(GcsSource value)
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
      • clearGcsSource

        public InputConfig.Builder clearGcsSource()
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
      • getGcsSourceBuilder

        public GcsSource.Builder getGcsSourceBuilder()
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
      • getGcsSourceOrBuilder

        public GcsSourceOrBuilder getGcsSourceOrBuilder()
         The Google Cloud Storage location for the input content.
         In ImportData, the gcs_source points to a csv with structure described in
         the comment.
         
        .google.cloud.automl.v1beta1.GcsSource gcs_source = 1;
        Specified by:
        getGcsSourceOrBuilder in interface InputConfigOrBuilder
      • hasBigquerySource

        public boolean hasBigquerySource()
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
        Specified by:
        hasBigquerySource in interface InputConfigOrBuilder
        Returns:
        Whether the bigquerySource field is set.
      • getBigquerySource

        public BigQuerySource getBigquerySource()
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
        Specified by:
        getBigquerySource in interface InputConfigOrBuilder
        Returns:
        The bigquerySource.
      • setBigquerySource

        public InputConfig.Builder setBigquerySource​(BigQuerySource value)
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
      • setBigquerySource

        public InputConfig.Builder setBigquerySource​(BigQuerySource.Builder builderForValue)
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
      • mergeBigquerySource

        public InputConfig.Builder mergeBigquerySource​(BigQuerySource value)
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
      • clearBigquerySource

        public InputConfig.Builder clearBigquerySource()
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
      • getBigquerySourceBuilder

        public BigQuerySource.Builder getBigquerySourceBuilder()
         The BigQuery location for the input content.
         
        .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 3;
      • getParamsCount

        public int getParamsCount()
        Description copied from interface: InputConfigOrBuilder
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsCount in interface InputConfigOrBuilder
      • containsParams

        public boolean containsParams​(String key)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        containsParams in interface InputConfigOrBuilder
      • getParamsMap

        public Map<String,​String> getParamsMap()
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsMap in interface InputConfigOrBuilder
      • getParamsOrDefault

        public String getParamsOrDefault​(String key,
                                         String defaultValue)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsOrDefault in interface InputConfigOrBuilder
      • getParamsOrThrow

        public String getParamsOrThrow​(String key)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsOrThrow in interface InputConfigOrBuilder
      • removeParams

        public InputConfig.Builder removeParams​(String key)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
      • getMutableParams

        @Deprecated
        public Map<String,​String> getMutableParams()
        Deprecated.
        Use alternate mutation accessors instead.
      • putParams

        public InputConfig.Builder putParams​(String key,
                                             String value)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
      • putAllParams

        public InputConfig.Builder putAllParams​(Map<String,​String> values)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         *  For Tables:
            `schema_inference_version` - (integer) Required. The version of the
                algorithm that should be used for the initial inference of the
                schema (columns' DataTypes) of the table the data is being imported
                into. Allowed values: "1".
         
        map<string, string> params = 2;
      • setUnknownFields

        public final InputConfig.Builder setUnknownFields​(com.google.protobuf.UnknownFieldSet unknownFields)
        Specified by:
        setUnknownFields in interface com.google.protobuf.Message.Builder
        Overrides:
        setUnknownFields in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>
      • mergeUnknownFields

        public final InputConfig.Builder mergeUnknownFields​(com.google.protobuf.UnknownFieldSet unknownFields)
        Specified by:
        mergeUnknownFields in interface com.google.protobuf.Message.Builder
        Overrides:
        mergeUnknownFields in class com.google.protobuf.GeneratedMessageV3.Builder<InputConfig.Builder>