Class InputConfig

  • All Implemented Interfaces:
    InputConfigOrBuilder, com.google.protobuf.Message, com.google.protobuf.MessageLite, com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder, Serializable

    public final class InputConfig
    extends com.google.protobuf.GeneratedMessageV3
    implements InputConfigOrBuilder
     Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action.
    
     The format of input depends on dataset_metadata the Dataset into which
     the import is happening has. As input source the
     [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source]
     is expected, unless specified otherwise. Additionally any input .CSV file
     by itself must be 100MB or smaller, unless specified otherwise.
     If an "example" file (that is, image, video etc.) with identical content
     (even if it had different `GCS_FILE_PATH`) is mentioned multiple times, then
     its label, bounding boxes etc. are appended. The same file should be always
     provided with the same `ML_USE` and `GCS_FILE_PATH`, if it is not, then
     these values are nondeterministically selected from the given ones.
    
     The formats are represented in EBNF with commas being literal and with
     non-terminal symbols defined near the end of this comment. The formats are:
    
     <h4>AutoML Vision</h4>
    
    
     <div class="ds-selector-tabs"><section><h5>Classification</h5>
    
     See [Preparing your training
     data](https://cloud.google.com/vision/automl/docs/prepare) for more
     information.
    
     CSV file(s) with each line in format:
    
         ML_USE,GCS_FILE_PATH,LABEL,LABEL,...
    
     *   `ML_USE` - Identifies the data set that the current row (file) applies
     to.
         This value can be one of the following:
         * `TRAIN` - Rows in this file are used to train the model.
         * `TEST` - Rows in this file are used to test the model during training.
         * `UNASSIGNED` - Rows in this file are not categorized. They are
            Automatically divided into train and test data. 80% for training and
            20% for testing.
    
     *   `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to
          30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP,
          .TIFF, .ICO.
    
     *   `LABEL` - A label that identifies the object in the image.
    
     For the `MULTICLASS` classification type, at most one `LABEL` is allowed
     per image. If an image has not yet been labeled, then it should be
     mentioned just once with no `LABEL`.
    
     Some sample rows:
    
         TRAIN,gs://folder/image1.jpg,daisy
         TEST,gs://folder/image2.jpg,dandelion,tulip,rose
         UNASSIGNED,gs://folder/image3.jpg,daisy
         UNASSIGNED,gs://folder/image4.jpg
    
    
     </section><section><h5>Object Detection</h5>
     See [Preparing your training
     data](https://cloud.google.com/vision/automl/object-detection/docs/prepare)
     for more information.
    
     A CSV file(s) with each line in format:
    
         ML_USE,GCS_FILE_PATH,[LABEL],(BOUNDING_BOX | ,,,,,,,)
    
     *   `ML_USE` - Identifies the data set that the current row (file) applies
     to.
         This value can be one of the following:
         * `TRAIN` - Rows in this file are used to train the model.
         * `TEST` - Rows in this file are used to test the model during training.
         * `UNASSIGNED` - Rows in this file are not categorized. They are
            Automatically divided into train and test data. 80% for training and
            20% for testing.
    
     *  `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to
         30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image
         is assumed to be exhaustively labeled.
    
     *  `LABEL` - A label that identifies the object in the image specified by the
        `BOUNDING_BOX`.
    
     *  `BOUNDING BOX` - The vertices of an object in the example image.
        The minimum allowed `BOUNDING_BOX` edge length is 0.01, and no more than
        500 `BOUNDING_BOX` instances per image are allowed (one `BOUNDING_BOX`
        per line). If an image has no looked for objects then it should be
        mentioned just once with no LABEL and the ",,,,,,," in place of the
       `BOUNDING_BOX`.
    
     **Four sample rows:**
    
         TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,,
         TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,,
         UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3
         TEST,gs://folder/im3.png,,,,,,,,,
       </section>
     </div>
    
    
     <h4>AutoML Video Intelligence</h4>
    
    
     <div class="ds-selector-tabs"><section><h5>Classification</h5>
    
     See [Preparing your training
     data](https://cloud.google.com/video-intelligence/automl/docs/prepare) for
     more information.
    
     CSV file(s) with each line in format:
    
         ML_USE,GCS_FILE_PATH
    
     For `ML_USE`, do not use `VALIDATE`.
    
     `GCS_FILE_PATH` is the path to another .csv file that describes training
     example for a given `ML_USE`, using the following row format:
    
         GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,)
    
     Here `GCS_FILE_PATH` leads to a video of up to 50GB in size and up
     to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
    
     `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the
     length of the video, and the end time must be after the start time. Any
     segment of a video which has one or more labels on it, is considered a
     hard negative for all other labels. Any segment with no labels on
     it is considered to be unknown. If a whole video is unknown, then
     it should be mentioned just once with ",," in place of `LABEL,
     TIME_SEGMENT_START,TIME_SEGMENT_END`.
    
     Sample top level CSV file:
    
         TRAIN,gs://folder/train_videos.csv
         TEST,gs://folder/test_videos.csv
         UNASSIGNED,gs://folder/other_videos.csv
    
     Sample rows of a CSV file for a particular ML_USE:
    
         gs://folder/video1.avi,car,120,180.000021
         gs://folder/video1.avi,bike,150,180.000021
         gs://folder/vid2.avi,car,0,60.5
         gs://folder/vid3.avi,,,
    
    
    
     </section><section><h5>Object Tracking</h5>
    
     See [Preparing your training
     data](/video-intelligence/automl/object-tracking/docs/prepare) for more
     information.
    
     CSV file(s) with each line in format:
    
         ML_USE,GCS_FILE_PATH
    
     For `ML_USE`, do not use `VALIDATE`.
    
     `GCS_FILE_PATH` is the path to another .csv file that describes training
     example for a given `ML_USE`, using the following row format:
    
         GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX
    
     or
    
         GCS_FILE_PATH,,,,,,,,,,
    
     Here `GCS_FILE_PATH` leads to a video of up to 50GB in size and up
     to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
     Providing `INSTANCE_ID`s can help to obtain a better model. When
     a specific labeled entity leaves the video frame, and shows up
     afterwards it is not required, albeit preferable, that the same
     `INSTANCE_ID` is given to it.
    
     `TIMESTAMP` must be within the length of the video, the
     `BOUNDING_BOX` is assumed to be drawn on the closest video's frame
     to the `TIMESTAMP`. Any mentioned by the `TIMESTAMP` frame is expected
     to be exhaustively labeled and no more than 500 `BOUNDING_BOX`-es per
     frame are allowed. If a whole video is unknown, then it should be
     mentioned just once with ",,,,,,,,,," in place of `LABEL,
     [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX`.
    
     Sample top level CSV file:
    
          TRAIN,gs://folder/train_videos.csv
          TEST,gs://folder/test_videos.csv
          UNASSIGNED,gs://folder/other_videos.csv
    
     Seven sample rows of a CSV file for a particular ML_USE:
    
          gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9
          gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9
          gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3
          gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,,
          gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,,
          gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,,
          gs://folder/video2.avi,,,,,,,,,,,
       </section>
     </div>
    
    
     <h4>AutoML Natural Language</h4>
    
    
     <div class="ds-selector-tabs"><section><h5>Entity Extraction</h5>
    
     See [Preparing your training
     data](/natural-language/automl/entity-analysis/docs/prepare) for more
     information.
    
     One or more CSV file(s) with each line in the following format:
    
         ML_USE,GCS_FILE_PATH
    
     *   `ML_USE` - Identifies the data set that the current row (file) applies
     to.
         This value can be one of the following:
         * `TRAIN` - Rows in this file are used to train the model.
         * `TEST` - Rows in this file are used to test the model during training.
         * `UNASSIGNED` - Rows in this file are not categorized. They are
            Automatically divided into train and test data. 80% for training and
            20% for testing..
    
     *   `GCS_FILE_PATH` - a Identifies JSON Lines (.JSONL) file stored in
          Google Cloud Storage that contains in-line text in-line as documents
          for model training.
    
     After the training data set has been determined from the `TRAIN` and
     `UNASSIGNED` CSV files, the training data is divided into train and
     validation data sets. 70% for training and 30% for validation.
    
     For example:
    
         TRAIN,gs://folder/file1.jsonl
         VALIDATE,gs://folder/file2.jsonl
         TEST,gs://folder/file3.jsonl
    
     **In-line JSONL files**
    
     In-line .JSONL files contain, per line, a JSON document that wraps a
     [`text_snippet`][google.cloud.automl.v1.TextSnippet] field followed by
     one or more [`annotations`][google.cloud.automl.v1.AnnotationPayload]
     fields, which have `display_name` and `text_extraction` fields to describe
     the entity from the text snippet. Multiple JSON documents can be separated
     using line breaks (\n).
    
     The supplied text must be annotated exhaustively. For example, if you
     include the text "horse", but do not label it as "animal",
     then "horse" is assumed to not be an "animal".
    
     Any given text snippet content must have 30,000 characters or
     less, and also be UTF-8 NFC encoded. ASCII is accepted as it is
     UTF-8 NFC encoded.
    
     For example:
    
         {
           "text_snippet": {
             "content": "dog car cat"
           },
           "annotations": [
              {
                "display_name": "animal",
                "text_extraction": {
                  "text_segment": {"start_offset": 0, "end_offset": 2}
               }
              },
              {
               "display_name": "vehicle",
                "text_extraction": {
                  "text_segment": {"start_offset": 4, "end_offset": 6}
                }
              },
              {
                "display_name": "animal",
                "text_extraction": {
                  "text_segment": {"start_offset": 8, "end_offset": 10}
                }
              }
          ]
         }\n
         {
            "text_snippet": {
              "content": "This dog is good."
            },
            "annotations": [
               {
                 "display_name": "animal",
                 "text_extraction": {
                   "text_segment": {"start_offset": 5, "end_offset": 7}
                 }
               }
            ]
         }
    
     **JSONL files that reference documents**
    
     .JSONL files contain, per line, a JSON document that wraps a
     `input_config` that contains the path to a source document.
     Multiple JSON documents can be separated using line breaks (\n).
    
     Supported document extensions: .PDF, .TIF, .TIFF
    
     For example:
    
         {
           "document": {
             "input_config": {
               "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
               }
             }
           }
         }\n
         {
           "document": {
             "input_config": {
               "gcs_source": { "input_uris": [ "gs://folder/document2.tif" ]
               }
             }
           }
         }
    
     **In-line JSONL files with document layout information**
    
     **Note:** You can only annotate documents using the UI. The format described
     below applies to annotated documents exported using the UI or `exportData`.
    
     In-line .JSONL files for documents contain, per line, a JSON document
     that wraps a `document` field that provides the textual content of the
     document and the layout information.
    
     For example:
    
         {
           "document": {
                   "document_text": {
                     "content": "dog car cat"
                   }
                   "layout": [
                     {
                       "text_segment": {
                         "start_offset": 0,
                         "end_offset": 11,
                        },
                        "page_number": 1,
                        "bounding_poly": {
                           "normalized_vertices": [
                             {"x": 0.1, "y": 0.1},
                             {"x": 0.1, "y": 0.3},
                             {"x": 0.3, "y": 0.3},
                             {"x": 0.3, "y": 0.1},
                           ],
                         },
                         "text_segment_type": TOKEN,
                     }
                   ],
                   "document_dimensions": {
                     "width": 8.27,
                     "height": 11.69,
                     "unit": INCH,
                   }
                   "page_count": 3,
                 },
                 "annotations": [
                   {
                     "display_name": "animal",
                     "text_extraction": {
                       "text_segment": {"start_offset": 0, "end_offset": 3}
                     }
                   },
                   {
                     "display_name": "vehicle",
                     "text_extraction": {
                       "text_segment": {"start_offset": 4, "end_offset": 7}
                     }
                   },
                   {
                     "display_name": "animal",
                     "text_extraction": {
                       "text_segment": {"start_offset": 8, "end_offset": 11}
                     }
                   },
                 ],
    
    
    
    
     </section><section><h5>Classification</h5>
    
     See [Preparing your training
     data](https://cloud.google.com/natural-language/automl/docs/prepare) for more
     information.
    
     One or more CSV file(s) with each line in the following format:
    
         ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,...
    
     *   `ML_USE` - Identifies the data set that the current row (file) applies
     to.
         This value can be one of the following:
         * `TRAIN` - Rows in this file are used to train the model.
         * `TEST` - Rows in this file are used to test the model during training.
         * `UNASSIGNED` - Rows in this file are not categorized. They are
            Automatically divided into train and test data. 80% for training and
            20% for testing.
    
     *   `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a pattern. If
         the column content is a valid Google Cloud Storage file path, that is,
         prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise, if
         the content is enclosed in double quotes (""), it is treated as a
         `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a
         file with supported extension and UTF-8 encoding, for example,
         "gs://folder/content.txt" AutoML imports the file content
         as a text snippet. For `TEXT_SNIPPET`, AutoML imports the column content
         excluding quotes. In both cases, size of the content must be 10MB or
         less in size. For zip files, the size of each file inside the zip must be
         10MB or less in size.
    
         For the `MULTICLASS` classification type, at most one `LABEL` is allowed.
    
         The `ML_USE` and `LABEL` columns are optional.
         Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP
    
     A maximum of 100 unique labels are allowed per CSV row.
    
     Sample rows:
    
         TRAIN,"They have bad food and very rude",RudeService,BadFood
         gs://folder/content.txt,SlowService
         TEST,gs://folder/document.pdf
         VALIDATE,gs://folder/text_files.zip,BadFood
    
    
    
     </section><section><h5>Sentiment Analysis</h5>
    
     See [Preparing your training
     data](https://cloud.google.com/natural-language/automl/docs/prepare) for more
     information.
    
     CSV file(s) with each line in format:
    
         ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT
    
     *   `ML_USE` - Identifies the data set that the current row (file) applies
     to.
         This value can be one of the following:
         * `TRAIN` - Rows in this file are used to train the model.
         * `TEST` - Rows in this file are used to test the model during training.
         * `UNASSIGNED` - Rows in this file are not categorized. They are
            Automatically divided into train and test data. 80% for training and
            20% for testing.
    
     *   `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a pattern. If
         the column content is a valid  Google Cloud Storage file path, that is,
         prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise, if
         the content is enclosed in double quotes (""), it is treated as a
         `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a
         file with supported extension and UTF-8 encoding, for example,
         "gs://folder/content.txt" AutoML imports the file content
         as a text snippet. For `TEXT_SNIPPET`, AutoML imports the column content
         excluding quotes. In both cases, size of the content must be 128kB or
         less in size. For zip files, the size of each file inside the zip must be
         128kB or less in size.
    
         The `ML_USE` and `SENTIMENT` columns are optional.
         Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP
    
     *  `SENTIMENT` - An integer between 0 and
         Dataset.text_sentiment_dataset_metadata.sentiment_max
         (inclusive). Describes the ordinal of the sentiment - higher
         value means a more positive sentiment. All the values are
         completely relative, i.e. neither 0 needs to mean a negative or
         neutral sentiment nor sentiment_max needs to mean a positive one -
         it is just required that 0 is the least positive sentiment
         in the data, and sentiment_max is the  most positive one.
         The SENTIMENT shouldn't be confused with "score" or "magnitude"
         from the previous Natural Language Sentiment Analysis API.
         All SENTIMENT values between 0 and sentiment_max must be
         represented in the imported data. On prediction the same 0 to
         sentiment_max range will be used. The difference between
         neighboring sentiment values needs not to be uniform, e.g. 1 and
         2 may be similar whereas the difference between 2 and 3 may be
         large.
    
     Sample rows:
    
         TRAIN,"@freewrytin this is way too good for your product",2
         gs://folder/content.txt,3
         TEST,gs://folder/document.pdf
         VALIDATE,gs://folder/text_files.zip,2
       </section>
     </div>
    
    
    
     <h4>AutoML Tables</h4><div class="ui-datasection-main"><section
     class="selected">
    
     See [Preparing your training
     data](https://cloud.google.com/automl-tables/docs/prepare) for more
     information.
    
     You can use either
     [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] or
     [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source].
     All input is concatenated into a
     single
     [primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id]
    
     **For gcs_source:**
    
     CSV file(s), where the first row of the first file is the header,
     containing unique column names. If the first row of a subsequent
     file is the same as the header, then it is also treated as a
     header. All other rows contain values for the corresponding
     columns.
    
     Each .CSV file by itself must be 10GB or smaller, and their total
     size must be 100GB or smaller.
    
     First three sample rows of a CSV file:
     <pre>
     "Id","First Name","Last Name","Dob","Addresses"
     "1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
     "2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
     </pre>
     **For bigquery_source:**
    
     An URI of a BigQuery table. The user data size of the BigQuery
     table must be 100GB or smaller.
    
     An imported table must have between 2 and 1,000 columns, inclusive,
     and between 1000 and 100,000,000 rows, inclusive. There are at most 5
     import data running in parallel.
    
       </section>
     </div>
    
    
     **Input field definitions:**
    
     `ML_USE`
     : ("TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED")
       Describes how the given example (file) should be used for model
       training. "UNASSIGNED" can be used when user has no preference.
    
     `GCS_FILE_PATH`
     : The path to a file on Google Cloud Storage. For example,
       "gs://folder/image1.png".
    
     `LABEL`
     : A display name of an object on an image, video etc., e.g. "dog".
       Must be up to 32 characters long and can consist only of ASCII
       Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9.
       For each label an AnnotationSpec is created which display_name
       becomes the label; AnnotationSpecs are given back in predictions.
    
     `INSTANCE_ID`
     : A positive integer that identifies a specific instance of a
       labeled entity on an example. Used e.g. to track two cars on
       a video while being able to tell apart which one is which.
    
     `BOUNDING_BOX`
     : (`VERTEX,VERTEX,VERTEX,VERTEX` | `VERTEX,,,VERTEX,,`)
       A rectangle parallel to the frame of the example (image,
       video). If 4 vertices are given they are connected by edges
       in the order provided, if 2 are given they are recognized
       as diagonally opposite vertices of the rectangle.
    
     `VERTEX`
     : (`COORDINATE,COORDINATE`)
       First coordinate is horizontal (x), the second is vertical (y).
    
     `COORDINATE`
     : A float in 0 to 1 range, relative to total length of
       image or video in given dimension. For fractions the
       leading non-decimal 0 can be omitted (i.e. 0.3 = .3).
       Point 0,0 is in top left.
    
     `TIME_SEGMENT_START`
     : (`TIME_OFFSET`)
       Expresses a beginning, inclusive, of a time segment
       within an example that has a time dimension
       (e.g. video).
    
     `TIME_SEGMENT_END`
     : (`TIME_OFFSET`)
       Expresses an end, exclusive, of a time segment within
       n example that has a time dimension (e.g. video).
    
     `TIME_OFFSET`
     : A number of seconds as measured from the start of an
       example (e.g. video). Fractions are allowed, up to a
       microsecond precision. "inf" is allowed, and it means the end
       of the example.
    
     `TEXT_SNIPPET`
     : The content of a text snippet, UTF-8 encoded, enclosed within
       double quotes ("").
    
     `DOCUMENT`
     : A field that provides the textual content with document and the layout
       information.
    
    
      **Errors:**
    
      If any of the provided CSV files can't be parsed or if more than certain
      percent of CSV rows cannot be processed then the operation fails and
      nothing is imported. Regardless of overall success or failure the per-row
      failures, up to a certain count cap, is listed in
      Operation.metadata.partial_failures.
     
    Protobuf type google.cloud.automl.v1.InputConfig
    See Also:
    Serialized Form
    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
      static class  InputConfig.Builder
      Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action.
      static class  InputConfig.SourceCase  
      • Nested classes/interfaces inherited from class com.google.protobuf.GeneratedMessageV3

        com.google.protobuf.GeneratedMessageV3.BuilderParent, com.google.protobuf.GeneratedMessageV3.ExtendableBuilder<MessageT extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT>,​BuilderT extends com.google.protobuf.GeneratedMessageV3.ExtendableBuilder<MessageT,​BuilderT>>, com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT>>, com.google.protobuf.GeneratedMessageV3.ExtendableMessageOrBuilder<MessageT extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT>>, com.google.protobuf.GeneratedMessageV3.FieldAccessorTable, com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter
      • Nested classes/interfaces inherited from class com.google.protobuf.AbstractMessageLite

        com.google.protobuf.AbstractMessageLite.InternalOneOfEnum
    • Field Summary

      Fields 
      Modifier and Type Field Description
      static int GCS_SOURCE_FIELD_NUMBER  
      static int PARAMS_FIELD_NUMBER  
      • Fields inherited from class com.google.protobuf.GeneratedMessageV3

        alwaysUseFieldBuilders, unknownFields
      • Fields inherited from class com.google.protobuf.AbstractMessage

        memoizedSize
      • Fields inherited from class com.google.protobuf.AbstractMessageLite

        memoizedHashCode
    • Method Detail

      • newInstance

        protected Object newInstance​(com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter unused)
        Overrides:
        newInstance in class com.google.protobuf.GeneratedMessageV3
      • getDescriptor

        public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
      • internalGetMapField

        protected com.google.protobuf.MapField internalGetMapField​(int number)
        Overrides:
        internalGetMapField in class com.google.protobuf.GeneratedMessageV3
      • internalGetFieldAccessorTable

        protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
        Specified by:
        internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessageV3
      • hasGcsSource

        public boolean hasGcsSource()
         The Google Cloud Storage location for the input content.
         For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with
         a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
         
        .google.cloud.automl.v1.GcsSource gcs_source = 1;
        Specified by:
        hasGcsSource in interface InputConfigOrBuilder
        Returns:
        Whether the gcsSource field is set.
      • getGcsSource

        public GcsSource getGcsSource()
         The Google Cloud Storage location for the input content.
         For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with
         a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
         
        .google.cloud.automl.v1.GcsSource gcs_source = 1;
        Specified by:
        getGcsSource in interface InputConfigOrBuilder
        Returns:
        The gcsSource.
      • getGcsSourceOrBuilder

        public GcsSourceOrBuilder getGcsSourceOrBuilder()
         The Google Cloud Storage location for the input content.
         For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with
         a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
         
        .google.cloud.automl.v1.GcsSource gcs_source = 1;
        Specified by:
        getGcsSourceOrBuilder in interface InputConfigOrBuilder
      • getParamsCount

        public int getParamsCount()
        Description copied from interface: InputConfigOrBuilder
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         <h4>AutoML Tables</h4>
        
         `schema_inference_version`
         : (integer) This value must be supplied.
           The version of the
           algorithm to use for the initial inference of the
           column data types of the imported table. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsCount in interface InputConfigOrBuilder
      • containsParams

        public boolean containsParams​(String key)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         <h4>AutoML Tables</h4>
        
         `schema_inference_version`
         : (integer) This value must be supplied.
           The version of the
           algorithm to use for the initial inference of the
           column data types of the imported table. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        containsParams in interface InputConfigOrBuilder
      • getParamsMap

        public Map<String,​String> getParamsMap()
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         <h4>AutoML Tables</h4>
        
         `schema_inference_version`
         : (integer) This value must be supplied.
           The version of the
           algorithm to use for the initial inference of the
           column data types of the imported table. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsMap in interface InputConfigOrBuilder
      • getParamsOrDefault

        public String getParamsOrDefault​(String key,
                                         String defaultValue)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         <h4>AutoML Tables</h4>
        
         `schema_inference_version`
         : (integer) This value must be supplied.
           The version of the
           algorithm to use for the initial inference of the
           column data types of the imported table. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsOrDefault in interface InputConfigOrBuilder
      • getParamsOrThrow

        public String getParamsOrThrow​(String key)
         Additional domain-specific parameters describing the semantic of the
         imported data, any string must be up to 25000
         characters long.
        
         <h4>AutoML Tables</h4>
        
         `schema_inference_version`
         : (integer) This value must be supplied.
           The version of the
           algorithm to use for the initial inference of the
           column data types of the imported table. Allowed values: "1".
         
        map<string, string> params = 2;
        Specified by:
        getParamsOrThrow in interface InputConfigOrBuilder
      • isInitialized

        public final boolean isInitialized()
        Specified by:
        isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
        Overrides:
        isInitialized in class com.google.protobuf.GeneratedMessageV3
      • writeTo

        public void writeTo​(com.google.protobuf.CodedOutputStream output)
                     throws IOException
        Specified by:
        writeTo in interface com.google.protobuf.MessageLite
        Overrides:
        writeTo in class com.google.protobuf.GeneratedMessageV3
        Throws:
        IOException
      • getSerializedSize

        public int getSerializedSize()
        Specified by:
        getSerializedSize in interface com.google.protobuf.MessageLite
        Overrides:
        getSerializedSize in class com.google.protobuf.GeneratedMessageV3
      • equals

        public boolean equals​(Object obj)
        Specified by:
        equals in interface com.google.protobuf.Message
        Overrides:
        equals in class com.google.protobuf.AbstractMessage
      • hashCode

        public int hashCode()
        Specified by:
        hashCode in interface com.google.protobuf.Message
        Overrides:
        hashCode in class com.google.protobuf.AbstractMessage
      • parseFrom

        public static InputConfig parseFrom​(ByteBuffer data)
                                     throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static InputConfig parseFrom​(ByteBuffer data,
                                            com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                     throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static InputConfig parseFrom​(com.google.protobuf.ByteString data)
                                     throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static InputConfig parseFrom​(com.google.protobuf.ByteString data,
                                            com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                     throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static InputConfig parseFrom​(byte[] data)
                                     throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static InputConfig parseFrom​(byte[] data,
                                            com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                     throws com.google.protobuf.InvalidProtocolBufferException
        Throws:
        com.google.protobuf.InvalidProtocolBufferException
      • parseFrom

        public static InputConfig parseFrom​(com.google.protobuf.CodedInputStream input,
                                            com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                     throws IOException
        Throws:
        IOException
      • newBuilderForType

        public InputConfig.Builder newBuilderForType()
        Specified by:
        newBuilderForType in interface com.google.protobuf.Message
        Specified by:
        newBuilderForType in interface com.google.protobuf.MessageLite
      • toBuilder

        public InputConfig.Builder toBuilder()
        Specified by:
        toBuilder in interface com.google.protobuf.Message
        Specified by:
        toBuilder in interface com.google.protobuf.MessageLite
      • newBuilderForType

        protected InputConfig.Builder newBuilderForType​(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)
        Specified by:
        newBuilderForType in class com.google.protobuf.GeneratedMessageV3
      • getDefaultInstance

        public static InputConfig getDefaultInstance()
      • parser

        public static com.google.protobuf.Parser<InputConfig> parser()
      • getParserForType

        public com.google.protobuf.Parser<InputConfig> getParserForType()
        Specified by:
        getParserForType in interface com.google.protobuf.Message
        Specified by:
        getParserForType in interface com.google.protobuf.MessageLite
        Overrides:
        getParserForType in class com.google.protobuf.GeneratedMessageV3
      • getDefaultInstanceForType

        public InputConfig getDefaultInstanceForType()
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder