Package com.google.cloud.automl.v1
Class InputConfig
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite
-
- com.google.protobuf.AbstractMessage
-
- com.google.protobuf.GeneratedMessageV3
-
- com.google.cloud.automl.v1.InputConfig
-
- All Implemented Interfaces:
InputConfigOrBuilder
,com.google.protobuf.Message
,com.google.protobuf.MessageLite
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Serializable
public final class InputConfig extends com.google.protobuf.GeneratedMessageV3 implements InputConfigOrBuilder
Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action. The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different `GCS_FILE_PATH`) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same `ML_USE` and `GCS_FILE_PATH`, if it is not, then these values are nondeterministically selected from the given ones. The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are: <h4>AutoML Vision</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5> See [Preparing your training data](https://cloud.google.com/vision/automl/docs/prepare) for more information. CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,LABEL,LABEL,... * `ML_USE` - Identifies the data set that the current row (file) applies to. This value can be one of the following: * `TRAIN` - Rows in this file are used to train the model. * `TEST` - Rows in this file are used to test the model during training. * `UNASSIGNED` - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing. * `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO. * `LABEL` - A label that identifies the object in the image. For the `MULTICLASS` classification type, at most one `LABEL` is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no `LABEL`. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy TEST,gs://folder/image2.jpg,dandelion,tulip,rose UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg </section><section><h5>Object Detection</h5> See [Preparing your training data](https://cloud.google.com/vision/automl/object-detection/docs/prepare) for more information. A CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,[LABEL],(BOUNDING_BOX | ,,,,,,,) * `ML_USE` - Identifies the data set that the current row (file) applies to. This value can be one of the following: * `TRAIN` - Rows in this file are used to train the model. * `TEST` - Rows in this file are used to test the model during training. * `UNASSIGNED` - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing. * `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled. * `LABEL` - A label that identifies the object in the image specified by the `BOUNDING_BOX`. * `BOUNDING BOX` - The vertices of an object in the example image. The minimum allowed `BOUNDING_BOX` edge length is 0.01, and no more than 500 `BOUNDING_BOX` instances per image are allowed (one `BOUNDING_BOX` per line). If an image has no looked for objects then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the `BOUNDING_BOX`. **Four sample rows:** TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 TEST,gs://folder/im3.png,,,,,,,,, </section> </div> <h4>AutoML Video Intelligence</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5> See [Preparing your training data](https://cloud.google.com/video-intelligence/automl/docs/prepare) for more information. CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH For `ML_USE`, do not use `VALIDATE`. `GCS_FILE_PATH` is the path to another .csv file that describes training example for a given `ML_USE`, using the following row format: GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here `GCS_FILE_PATH` leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the length of the video, and the end time must be after the start time. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it should be mentioned just once with ",," in place of `LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END`. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,120,180.000021 gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5 gs://folder/vid3.avi,,, </section><section><h5>Object Tracking</h5> See [Preparing your training data](/video-intelligence/automl/object-tracking/docs/prepare) for more information. CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH For `ML_USE`, do not use `VALIDATE`. `GCS_FILE_PATH` is the path to another .csv file that describes training example for a given `ML_USE`, using the following row format: GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or GCS_FILE_PATH,,,,,,,,,, Here `GCS_FILE_PATH` leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing `INSTANCE_ID`s can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same `INSTANCE_ID` is given to it. `TIMESTAMP` must be within the length of the video, the `BOUNDING_BOX` is assumed to be drawn on the closest video's frame to the `TIMESTAMP`. Any mentioned by the `TIMESTAMP` frame is expected to be exhaustively labeled and no more than 500 `BOUNDING_BOX`-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of `LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX`. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, gs://folder/video2.avi,,,,,,,,,,, </section> </div> <h4>AutoML Natural Language</h4> <div class="ds-selector-tabs"><section><h5>Entity Extraction</h5> See [Preparing your training data](/natural-language/automl/entity-analysis/docs/prepare) for more information. One or more CSV file(s) with each line in the following format: ML_USE,GCS_FILE_PATH * `ML_USE` - Identifies the data set that the current row (file) applies to. This value can be one of the following: * `TRAIN` - Rows in this file are used to train the model. * `TEST` - Rows in this file are used to test the model during training. * `UNASSIGNED` - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing.. * `GCS_FILE_PATH` - a Identifies JSON Lines (.JSONL) file stored in Google Cloud Storage that contains in-line text in-line as documents for model training. After the training data set has been determined from the `TRAIN` and `UNASSIGNED` CSV files, the training data is divided into train and validation data sets. 70% for training and 30% for validation. For example: TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl TEST,gs://folder/file3.jsonl **In-line JSONL files** In-line .JSONL files contain, per line, a JSON document that wraps a [`text_snippet`][google.cloud.automl.v1.TextSnippet] field followed by one or more [`annotations`][google.cloud.automl.v1.AnnotationPayload] fields, which have `display_name` and `text_extraction` fields to describe the entity from the text snippet. Multiple JSON documents can be separated using line breaks (\n). The supplied text must be annotated exhaustively. For example, if you include the text "horse", but do not label it as "animal", then "horse" is assumed to not be an "animal". Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded. ASCII is accepted as it is UTF-8 NFC encoded. For example: { "text_snippet": { "content": "dog car cat" }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 0, "end_offset": 2} } }, { "display_name": "vehicle", "text_extraction": { "text_segment": {"start_offset": 4, "end_offset": 6} } }, { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 8, "end_offset": 10} } } ] }\n { "text_snippet": { "content": "This dog is good." }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 5, "end_offset": 7} } } ] } **JSONL files that reference documents** .JSONL files contain, per line, a JSON document that wraps a `input_config` that contains the path to a source document. Multiple JSON documents can be separated using line breaks (\n). Supported document extensions: .PDF, .TIF, .TIFF For example: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.tif" ] } } } } **In-line JSONL files with document layout information** **Note:** You can only annotate documents using the UI. The format described below applies to annotated documents exported using the UI or `exportData`. In-line .JSONL files for documents contain, per line, a JSON document that wraps a `document` field that provides the textual content of the document and the layout information. For example: { "document": { "document_text": { "content": "dog car cat" } "layout": [ { "text_segment": { "start_offset": 0, "end_offset": 11, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], }, "text_segment_type": TOKEN, } ], "document_dimensions": { "width": 8.27, "height": 11.69, "unit": INCH, } "page_count": 3, }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 0, "end_offset": 3} } }, { "display_name": "vehicle", "text_extraction": { "text_segment": {"start_offset": 4, "end_offset": 7} } }, { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 8, "end_offset": 11} } }, ], </section><section><h5>Classification</h5> See [Preparing your training data](https://cloud.google.com/natural-language/automl/docs/prepare) for more information. One or more CSV file(s) with each line in the following format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... * `ML_USE` - Identifies the data set that the current row (file) applies to. This value can be one of the following: * `TRAIN` - Rows in this file are used to train the model. * `TEST` - Rows in this file are used to test the model during training. * `UNASSIGNED` - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing. * `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a pattern. If the column content is a valid Google Cloud Storage file path, that is, prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise, if the content is enclosed in double quotes (""), it is treated as a `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a file with supported extension and UTF-8 encoding, for example, "gs://folder/content.txt" AutoML imports the file content as a text snippet. For `TEXT_SNIPPET`, AutoML imports the column content excluding quotes. In both cases, size of the content must be 10MB or less in size. For zip files, the size of each file inside the zip must be 10MB or less in size. For the `MULTICLASS` classification type, at most one `LABEL` is allowed. The `ML_USE` and `LABEL` columns are optional. Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP A maximum of 100 unique labels are allowed per CSV row. Sample rows: TRAIN,"They have bad food and very rude",RudeService,BadFood gs://folder/content.txt,SlowService TEST,gs://folder/document.pdf VALIDATE,gs://folder/text_files.zip,BadFood </section><section><h5>Sentiment Analysis</h5> See [Preparing your training data](https://cloud.google.com/natural-language/automl/docs/prepare) for more information. CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT * `ML_USE` - Identifies the data set that the current row (file) applies to. This value can be one of the following: * `TRAIN` - Rows in this file are used to train the model. * `TEST` - Rows in this file are used to test the model during training. * `UNASSIGNED` - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing. * `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a pattern. If the column content is a valid Google Cloud Storage file path, that is, prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise, if the content is enclosed in double quotes (""), it is treated as a `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a file with supported extension and UTF-8 encoding, for example, "gs://folder/content.txt" AutoML imports the file content as a text snippet. For `TEXT_SNIPPET`, AutoML imports the column content excluding quotes. In both cases, size of the content must be 128kB or less in size. For zip files, the size of each file inside the zip must be 128kB or less in size. The `ML_USE` and `SENTIMENT` columns are optional. Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP * `SENTIMENT` - An integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive). Describes the ordinal of the sentiment - higher value means a more positive sentiment. All the values are completely relative, i.e. neither 0 needs to mean a negative or neutral sentiment nor sentiment_max needs to mean a positive one - it is just required that 0 is the least positive sentiment in the data, and sentiment_max is the most positive one. The SENTIMENT shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API. All SENTIMENT values between 0 and sentiment_max must be represented in the imported data. On prediction the same 0 to sentiment_max range will be used. The difference between neighboring sentiment values needs not to be uniform, e.g. 1 and 2 may be similar whereas the difference between 2 and 3 may be large. Sample rows: TRAIN,"@freewrytin this is way too good for your product",2 gs://folder/content.txt,3 TEST,gs://folder/document.pdf VALIDATE,gs://folder/text_files.zip,2 </section> </div> <h4>AutoML Tables</h4><div class="ui-datasection-main"><section class="selected"> See [Preparing your training data](https://cloud.google.com/automl-tables/docs/prepare) for more information. You can use either [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] or [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source]. All input is concatenated into a single [primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id] **For gcs_source:** CSV file(s), where the first row of the first file is the header, containing unique column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. Each .CSV file by itself must be 10GB or smaller, and their total size must be 100GB or smaller. First three sample rows of a CSV file: <pre> "Id","First Name","Last Name","Dob","Addresses" "1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" "2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} </pre> **For bigquery_source:** An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. An imported table must have between 2 and 1,000 columns, inclusive, and between 1000 and 100,000,000 rows, inclusive. There are at most 5 import data running in parallel. </section> </div> **Input field definitions:** `ML_USE` : ("TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED") Describes how the given example (file) should be used for model training. "UNASSIGNED" can be used when user has no preference. `GCS_FILE_PATH` : The path to a file on Google Cloud Storage. For example, "gs://folder/image1.png". `LABEL` : A display name of an object on an image, video etc., e.g. "dog". Must be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. For each label an AnnotationSpec is created which display_name becomes the label; AnnotationSpecs are given back in predictions. `INSTANCE_ID` : A positive integer that identifies a specific instance of a labeled entity on an example. Used e.g. to track two cars on a video while being able to tell apart which one is which. `BOUNDING_BOX` : (`VERTEX,VERTEX,VERTEX,VERTEX` | `VERTEX,,,VERTEX,,`) A rectangle parallel to the frame of the example (image, video). If 4 vertices are given they are connected by edges in the order provided, if 2 are given they are recognized as diagonally opposite vertices of the rectangle. `VERTEX` : (`COORDINATE,COORDINATE`) First coordinate is horizontal (x), the second is vertical (y). `COORDINATE` : A float in 0 to 1 range, relative to total length of image or video in given dimension. For fractions the leading non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left. `TIME_SEGMENT_START` : (`TIME_OFFSET`) Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). `TIME_SEGMENT_END` : (`TIME_OFFSET`) Expresses an end, exclusive, of a time segment within n example that has a time dimension (e.g. video). `TIME_OFFSET` : A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example. `TEXT_SNIPPET` : The content of a text snippet, UTF-8 encoded, enclosed within double quotes (""). `DOCUMENT` : A field that provides the textual content with document and the layout information. **Errors:** If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and nothing is imported. Regardless of overall success or failure the per-row failures, up to a certain count cap, is listed in Operation.metadata.partial_failures.
Protobuf typegoogle.cloud.automl.v1.InputConfig
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
InputConfig.Builder
Input configuration for [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action.static class
InputConfig.SourceCase
-
Nested classes/interfaces inherited from class com.google.protobuf.GeneratedMessageV3
com.google.protobuf.GeneratedMessageV3.BuilderParent, com.google.protobuf.GeneratedMessageV3.ExtendableBuilder<MessageT extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT>,BuilderT extends com.google.protobuf.GeneratedMessageV3.ExtendableBuilder<MessageT,BuilderT>>, com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT>>, com.google.protobuf.GeneratedMessageV3.ExtendableMessageOrBuilder<MessageT extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageT>>, com.google.protobuf.GeneratedMessageV3.FieldAccessorTable, com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter
-
-
Field Summary
Fields Modifier and Type Field Description static int
GCS_SOURCE_FIELD_NUMBER
static int
PARAMS_FIELD_NUMBER
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description boolean
containsParams(String key)
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long.boolean
equals(Object obj)
static InputConfig
getDefaultInstance()
InputConfig
getDefaultInstanceForType()
static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
GcsSource
getGcsSource()
The Google Cloud Storage location for the input content.GcsSourceOrBuilder
getGcsSourceOrBuilder()
The Google Cloud Storage location for the input content.Map<String,String>
getParams()
Deprecated.int
getParamsCount()
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long.Map<String,String>
getParamsMap()
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long.String
getParamsOrDefault(String key, String defaultValue)
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long.String
getParamsOrThrow(String key)
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long.com.google.protobuf.Parser<InputConfig>
getParserForType()
int
getSerializedSize()
InputConfig.SourceCase
getSourceCase()
boolean
hasGcsSource()
The Google Cloud Storage location for the input content.int
hashCode()
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
protected com.google.protobuf.MapField
internalGetMapField(int number)
boolean
isInitialized()
static InputConfig.Builder
newBuilder()
static InputConfig.Builder
newBuilder(InputConfig prototype)
InputConfig.Builder
newBuilderForType()
protected InputConfig.Builder
newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)
protected Object
newInstance(com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter unused)
static InputConfig
parseDelimitedFrom(InputStream input)
static InputConfig
parseDelimitedFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
static InputConfig
parseFrom(byte[] data)
static InputConfig
parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
static InputConfig
parseFrom(com.google.protobuf.ByteString data)
static InputConfig
parseFrom(com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
static InputConfig
parseFrom(com.google.protobuf.CodedInputStream input)
static InputConfig
parseFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
static InputConfig
parseFrom(InputStream input)
static InputConfig
parseFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
static InputConfig
parseFrom(ByteBuffer data)
static InputConfig
parseFrom(ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
static com.google.protobuf.Parser<InputConfig>
parser()
InputConfig.Builder
toBuilder()
void
writeTo(com.google.protobuf.CodedOutputStream output)
-
Methods inherited from class com.google.protobuf.GeneratedMessageV3
canUseUnsafe, computeStringSize, computeStringSizeNoTag, emptyBooleanList, emptyDoubleList, emptyFloatList, emptyIntList, emptyLongList, getAllFields, getDescriptorForType, getField, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof, isStringEmpty, makeExtensionsImmutable, makeMutableCopy, mergeFromAndMakeImmutableInternal, mutableCopy, mutableCopy, mutableCopy, mutableCopy, mutableCopy, newBooleanList, newBuilderForType, newDoubleList, newFloatList, newIntList, newLongList, parseDelimitedWithIOException, parseDelimitedWithIOException, parseUnknownField, parseUnknownFieldProto3, parseWithIOException, parseWithIOException, parseWithIOException, parseWithIOException, serializeBooleanMapTo, serializeIntegerMapTo, serializeLongMapTo, serializeStringMapTo, writeReplace, writeString, writeStringNoTag
-
Methods inherited from class com.google.protobuf.AbstractMessage
findInitializationErrors, getInitializationErrorString, hashBoolean, hashEnum, hashEnumList, hashFields, hashLong, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite
addAll, addAll, checkByteStringIsUtf8, toByteArray, toByteString, writeDelimitedTo, writeTo
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
-
-
-
Field Detail
-
GCS_SOURCE_FIELD_NUMBER
public static final int GCS_SOURCE_FIELD_NUMBER
- See Also:
- Constant Field Values
-
PARAMS_FIELD_NUMBER
public static final int PARAMS_FIELD_NUMBER
- See Also:
- Constant Field Values
-
-
Method Detail
-
newInstance
protected Object newInstance(com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter unused)
- Overrides:
newInstance
in classcom.google.protobuf.GeneratedMessageV3
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetMapField
protected com.google.protobuf.MapField internalGetMapField(int number)
- Overrides:
internalGetMapField
in classcom.google.protobuf.GeneratedMessageV3
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3
-
getSourceCase
public InputConfig.SourceCase getSourceCase()
- Specified by:
getSourceCase
in interfaceInputConfigOrBuilder
-
hasGcsSource
public boolean hasGcsSource()
The Google Cloud Storage location for the input content. For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
.google.cloud.automl.v1.GcsSource gcs_source = 1;
- Specified by:
hasGcsSource
in interfaceInputConfigOrBuilder
- Returns:
- Whether the gcsSource field is set.
-
getGcsSource
public GcsSource getGcsSource()
The Google Cloud Storage location for the input content. For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
.google.cloud.automl.v1.GcsSource gcs_source = 1;
- Specified by:
getGcsSource
in interfaceInputConfigOrBuilder
- Returns:
- The gcsSource.
-
getGcsSourceOrBuilder
public GcsSourceOrBuilder getGcsSourceOrBuilder()
The Google Cloud Storage location for the input content. For [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData], `gcs_source` points to a CSV file with a structure described in [InputConfig][google.cloud.automl.v1.InputConfig].
.google.cloud.automl.v1.GcsSource gcs_source = 1;
- Specified by:
getGcsSourceOrBuilder
in interfaceInputConfigOrBuilder
-
getParamsCount
public int getParamsCount()
Description copied from interface:InputConfigOrBuilder
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long. <h4>AutoML Tables</h4> `schema_inference_version` : (integer) This value must be supplied. The version of the algorithm to use for the initial inference of the column data types of the imported table. Allowed values: "1".
map<string, string> params = 2;
- Specified by:
getParamsCount
in interfaceInputConfigOrBuilder
-
containsParams
public boolean containsParams(String key)
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long. <h4>AutoML Tables</h4> `schema_inference_version` : (integer) This value must be supplied. The version of the algorithm to use for the initial inference of the column data types of the imported table. Allowed values: "1".
map<string, string> params = 2;
- Specified by:
containsParams
in interfaceInputConfigOrBuilder
-
getParams
@Deprecated public Map<String,String> getParams()
Deprecated.UsegetParamsMap()
instead.- Specified by:
getParams
in interfaceInputConfigOrBuilder
-
getParamsMap
public Map<String,String> getParamsMap()
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long. <h4>AutoML Tables</h4> `schema_inference_version` : (integer) This value must be supplied. The version of the algorithm to use for the initial inference of the column data types of the imported table. Allowed values: "1".
map<string, string> params = 2;
- Specified by:
getParamsMap
in interfaceInputConfigOrBuilder
-
getParamsOrDefault
public String getParamsOrDefault(String key, String defaultValue)
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long. <h4>AutoML Tables</h4> `schema_inference_version` : (integer) This value must be supplied. The version of the algorithm to use for the initial inference of the column data types of the imported table. Allowed values: "1".
map<string, string> params = 2;
- Specified by:
getParamsOrDefault
in interfaceInputConfigOrBuilder
-
getParamsOrThrow
public String getParamsOrThrow(String key)
Additional domain-specific parameters describing the semantic of the imported data, any string must be up to 25000 characters long. <h4>AutoML Tables</h4> `schema_inference_version` : (integer) This value must be supplied. The version of the algorithm to use for the initial inference of the column data types of the imported table. Allowed values: "1".
map<string, string> params = 2;
- Specified by:
getParamsOrThrow
in interfaceInputConfigOrBuilder
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3
-
writeTo
public void writeTo(com.google.protobuf.CodedOutputStream output) throws IOException
- Specified by:
writeTo
in interfacecom.google.protobuf.MessageLite
- Overrides:
writeTo
in classcom.google.protobuf.GeneratedMessageV3
- Throws:
IOException
-
getSerializedSize
public int getSerializedSize()
- Specified by:
getSerializedSize
in interfacecom.google.protobuf.MessageLite
- Overrides:
getSerializedSize
in classcom.google.protobuf.GeneratedMessageV3
-
equals
public boolean equals(Object obj)
- Specified by:
equals
in interfacecom.google.protobuf.Message
- Overrides:
equals
in classcom.google.protobuf.AbstractMessage
-
hashCode
public int hashCode()
- Specified by:
hashCode
in interfacecom.google.protobuf.Message
- Overrides:
hashCode
in classcom.google.protobuf.AbstractMessage
-
parseFrom
public static InputConfig parseFrom(ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException
- Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static InputConfig parseFrom(ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException
- Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static InputConfig parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException
- Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static InputConfig parseFrom(com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException
- Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static InputConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException
- Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static InputConfig parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException
- Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static InputConfig parseFrom(InputStream input) throws IOException
- Throws:
IOException
-
parseFrom
public static InputConfig parseFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Throws:
IOException
-
parseDelimitedFrom
public static InputConfig parseDelimitedFrom(InputStream input) throws IOException
- Throws:
IOException
-
parseDelimitedFrom
public static InputConfig parseDelimitedFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Throws:
IOException
-
parseFrom
public static InputConfig parseFrom(com.google.protobuf.CodedInputStream input) throws IOException
- Throws:
IOException
-
parseFrom
public static InputConfig parseFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Throws:
IOException
-
newBuilderForType
public InputConfig.Builder newBuilderForType()
- Specified by:
newBuilderForType
in interfacecom.google.protobuf.Message
- Specified by:
newBuilderForType
in interfacecom.google.protobuf.MessageLite
-
newBuilder
public static InputConfig.Builder newBuilder()
-
newBuilder
public static InputConfig.Builder newBuilder(InputConfig prototype)
-
toBuilder
public InputConfig.Builder toBuilder()
- Specified by:
toBuilder
in interfacecom.google.protobuf.Message
- Specified by:
toBuilder
in interfacecom.google.protobuf.MessageLite
-
newBuilderForType
protected InputConfig.Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)
- Specified by:
newBuilderForType
in classcom.google.protobuf.GeneratedMessageV3
-
getDefaultInstance
public static InputConfig getDefaultInstance()
-
parser
public static com.google.protobuf.Parser<InputConfig> parser()
-
getParserForType
public com.google.protobuf.Parser<InputConfig> getParserForType()
- Specified by:
getParserForType
in interfacecom.google.protobuf.Message
- Specified by:
getParserForType
in interfacecom.google.protobuf.MessageLite
- Overrides:
getParserForType
in classcom.google.protobuf.GeneratedMessageV3
-
getDefaultInstanceForType
public InputConfig getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
-