Class AutoMlTablesInputs.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
- com.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Builder
-
- All Implemented Interfaces:
AutoMlTablesInputsOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- AutoMlTablesInputs
public static final class AutoMlTablesInputs.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder> implements AutoMlTablesInputsOrBuilder
Protobuf typegoogle.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description AutoMlTablesInputs.Builder
addAdditionalExperiments(String value)
Additional experiment flags for the Tables training pipeline.AutoMlTablesInputs.Builder
addAdditionalExperimentsBytes(com.google.protobuf.ByteString value)
Additional experiment flags for the Tables training pipeline.AutoMlTablesInputs.Builder
addAllAdditionalExperiments(Iterable<String> values)
Additional experiment flags for the Tables training pipeline.AutoMlTablesInputs.Builder
addAllTransformations(Iterable<? extends AutoMlTablesInputs.Transformation> values)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
AutoMlTablesInputs.Builder
addTransformations(int index, AutoMlTablesInputs.Transformation value)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
addTransformations(int index, AutoMlTablesInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
addTransformations(AutoMlTablesInputs.Transformation value)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
addTransformations(AutoMlTablesInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Transformation.Builder
addTransformationsBuilder()
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Transformation.Builder
addTransformationsBuilder(int index)
Each transformation will apply transform function to given input column.AutoMlTablesInputs
build()
AutoMlTablesInputs
buildPartial()
AutoMlTablesInputs.Builder
clear()
AutoMlTablesInputs.Builder
clearAdditionalExperiments()
Additional experiment flags for the Tables training pipeline.AutoMlTablesInputs.Builder
clearAdditionalOptimizationObjectiveConfig()
AutoMlTablesInputs.Builder
clearDisableEarlyStopping()
Use the entire training budget.AutoMlTablesInputs.Builder
clearExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.AutoMlTablesInputs.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
AutoMlTablesInputs.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
AutoMlTablesInputs.Builder
clearOptimizationObjective()
Objective function the model is optimizing towards.AutoMlTablesInputs.Builder
clearOptimizationObjectivePrecisionValue()
Required when optimization_objective is "maximize-recall-at-precision".AutoMlTablesInputs.Builder
clearOptimizationObjectiveRecallValue()
Required when optimization_objective is "maximize-precision-at-recall".AutoMlTablesInputs.Builder
clearPredictionType()
The type of prediction the Model is to produce.AutoMlTablesInputs.Builder
clearTargetColumn()
The column name of the target column that the model is to predict.AutoMlTablesInputs.Builder
clearTrainBudgetMilliNodeHours()
Required.AutoMlTablesInputs.Builder
clearTransformations()
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
clearWeightColumnName()
Column name that should be used as the weight column.AutoMlTablesInputs.Builder
clone()
String
getAdditionalExperiments(int index)
Additional experiment flags for the Tables training pipeline.com.google.protobuf.ByteString
getAdditionalExperimentsBytes(int index)
Additional experiment flags for the Tables training pipeline.int
getAdditionalExperimentsCount()
Additional experiment flags for the Tables training pipeline.com.google.protobuf.ProtocolStringList
getAdditionalExperimentsList()
Additional experiment flags for the Tables training pipeline.AutoMlTablesInputs.AdditionalOptimizationObjectiveConfigCase
getAdditionalOptimizationObjectiveConfigCase()
AutoMlTablesInputs
getDefaultInstanceForType()
static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
com.google.protobuf.Descriptors.Descriptor
getDescriptorForType()
boolean
getDisableEarlyStopping()
Use the entire training budget.ExportEvaluatedDataItemsConfig
getExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.ExportEvaluatedDataItemsConfig.Builder
getExportEvaluatedDataItemsConfigBuilder()
Configuration for exporting test set predictions to a BigQuery table.ExportEvaluatedDataItemsConfigOrBuilder
getExportEvaluatedDataItemsConfigOrBuilder()
Configuration for exporting test set predictions to a BigQuery table.String
getOptimizationObjective()
Objective function the model is optimizing towards.com.google.protobuf.ByteString
getOptimizationObjectiveBytes()
Objective function the model is optimizing towards.float
getOptimizationObjectivePrecisionValue()
Required when optimization_objective is "maximize-recall-at-precision".float
getOptimizationObjectiveRecallValue()
Required when optimization_objective is "maximize-precision-at-recall".String
getPredictionType()
The type of prediction the Model is to produce.com.google.protobuf.ByteString
getPredictionTypeBytes()
The type of prediction the Model is to produce.String
getTargetColumn()
The column name of the target column that the model is to predict.com.google.protobuf.ByteString
getTargetColumnBytes()
The column name of the target column that the model is to predict.long
getTrainBudgetMilliNodeHours()
Required.AutoMlTablesInputs.Transformation
getTransformations(int index)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Transformation.Builder
getTransformationsBuilder(int index)
Each transformation will apply transform function to given input column.List<AutoMlTablesInputs.Transformation.Builder>
getTransformationsBuilderList()
Each transformation will apply transform function to given input column.int
getTransformationsCount()
Each transformation will apply transform function to given input column.List<AutoMlTablesInputs.Transformation>
getTransformationsList()
Each transformation will apply transform function to given input column.AutoMlTablesInputs.TransformationOrBuilder
getTransformationsOrBuilder(int index)
Each transformation will apply transform function to given input column.List<? extends AutoMlTablesInputs.TransformationOrBuilder>
getTransformationsOrBuilderList()
Each transformation will apply transform function to given input column.String
getWeightColumnName()
Column name that should be used as the weight column.com.google.protobuf.ByteString
getWeightColumnNameBytes()
Column name that should be used as the weight column.boolean
hasExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table.boolean
hasOptimizationObjectivePrecisionValue()
Required when optimization_objective is "maximize-recall-at-precision".boolean
hasOptimizationObjectiveRecallValue()
Required when optimization_objective is "maximize-precision-at-recall".protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
boolean
isInitialized()
AutoMlTablesInputs.Builder
mergeExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table.AutoMlTablesInputs.Builder
mergeFrom(AutoMlTablesInputs other)
AutoMlTablesInputs.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
AutoMlTablesInputs.Builder
mergeFrom(com.google.protobuf.Message other)
AutoMlTablesInputs.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
AutoMlTablesInputs.Builder
removeTransformations(int index)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
setAdditionalExperiments(int index, String value)
Additional experiment flags for the Tables training pipeline.AutoMlTablesInputs.Builder
setDisableEarlyStopping(boolean value)
Use the entire training budget.AutoMlTablesInputs.Builder
setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table.AutoMlTablesInputs.Builder
setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig.Builder builderForValue)
Configuration for exporting test set predictions to a BigQuery table.AutoMlTablesInputs.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
AutoMlTablesInputs.Builder
setOptimizationObjective(String value)
Objective function the model is optimizing towards.AutoMlTablesInputs.Builder
setOptimizationObjectiveBytes(com.google.protobuf.ByteString value)
Objective function the model is optimizing towards.AutoMlTablesInputs.Builder
setOptimizationObjectivePrecisionValue(float value)
Required when optimization_objective is "maximize-recall-at-precision".AutoMlTablesInputs.Builder
setOptimizationObjectiveRecallValue(float value)
Required when optimization_objective is "maximize-precision-at-recall".AutoMlTablesInputs.Builder
setPredictionType(String value)
The type of prediction the Model is to produce.AutoMlTablesInputs.Builder
setPredictionTypeBytes(com.google.protobuf.ByteString value)
The type of prediction the Model is to produce.AutoMlTablesInputs.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
AutoMlTablesInputs.Builder
setTargetColumn(String value)
The column name of the target column that the model is to predict.AutoMlTablesInputs.Builder
setTargetColumnBytes(com.google.protobuf.ByteString value)
The column name of the target column that the model is to predict.AutoMlTablesInputs.Builder
setTrainBudgetMilliNodeHours(long value)
Required.AutoMlTablesInputs.Builder
setTransformations(int index, AutoMlTablesInputs.Transformation value)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
setTransformations(int index, AutoMlTablesInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column.AutoMlTablesInputs.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
AutoMlTablesInputs.Builder
setWeightColumnName(String value)
Column name that should be used as the weight column.AutoMlTablesInputs.Builder
setWeightColumnNameBytes(com.google.protobuf.ByteString value)
Column name that should be used as the weight column.-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
clear
public AutoMlTablesInputs.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
getDefaultInstanceForType
public AutoMlTablesInputs getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public AutoMlTablesInputs build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public AutoMlTablesInputs buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public AutoMlTablesInputs.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
setField
public AutoMlTablesInputs.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
clearField
public AutoMlTablesInputs.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
clearOneof
public AutoMlTablesInputs.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
setRepeatedField
public AutoMlTablesInputs.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
addRepeatedField
public AutoMlTablesInputs.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
mergeFrom
public AutoMlTablesInputs.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<AutoMlTablesInputs.Builder>
-
mergeFrom
public AutoMlTablesInputs.Builder mergeFrom(AutoMlTablesInputs other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
mergeFrom
public AutoMlTablesInputs.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<AutoMlTablesInputs.Builder>
- Throws:
IOException
-
getAdditionalOptimizationObjectiveConfigCase
public AutoMlTablesInputs.AdditionalOptimizationObjectiveConfigCase getAdditionalOptimizationObjectiveConfigCase()
- Specified by:
getAdditionalOptimizationObjectiveConfigCase
in interfaceAutoMlTablesInputsOrBuilder
-
clearAdditionalOptimizationObjectiveConfig
public AutoMlTablesInputs.Builder clearAdditionalOptimizationObjectiveConfig()
-
hasOptimizationObjectiveRecallValue
public boolean hasOptimizationObjectiveRecallValue()
Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 5;
- Specified by:
hasOptimizationObjectiveRecallValue
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- Whether the optimizationObjectiveRecallValue field is set.
-
getOptimizationObjectiveRecallValue
public float getOptimizationObjectiveRecallValue()
Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 5;
- Specified by:
getOptimizationObjectiveRecallValue
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The optimizationObjectiveRecallValue.
-
setOptimizationObjectiveRecallValue
public AutoMlTablesInputs.Builder setOptimizationObjectiveRecallValue(float value)
Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 5;
- Parameters:
value
- The optimizationObjectiveRecallValue to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjectiveRecallValue
public AutoMlTablesInputs.Builder clearOptimizationObjectiveRecallValue()
Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 5;
- Returns:
- This builder for chaining.
-
hasOptimizationObjectivePrecisionValue
public boolean hasOptimizationObjectivePrecisionValue()
Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 6;
- Specified by:
hasOptimizationObjectivePrecisionValue
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- Whether the optimizationObjectivePrecisionValue field is set.
-
getOptimizationObjectivePrecisionValue
public float getOptimizationObjectivePrecisionValue()
Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 6;
- Specified by:
getOptimizationObjectivePrecisionValue
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The optimizationObjectivePrecisionValue.
-
setOptimizationObjectivePrecisionValue
public AutoMlTablesInputs.Builder setOptimizationObjectivePrecisionValue(float value)
Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 6;
- Parameters:
value
- The optimizationObjectivePrecisionValue to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjectivePrecisionValue
public AutoMlTablesInputs.Builder clearOptimizationObjectivePrecisionValue()
Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 6;
- Returns:
- This builder for chaining.
-
getPredictionType
public String getPredictionType()
The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.
string prediction_type = 1;
- Specified by:
getPredictionType
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The predictionType.
-
getPredictionTypeBytes
public com.google.protobuf.ByteString getPredictionTypeBytes()
The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.
string prediction_type = 1;
- Specified by:
getPredictionTypeBytes
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The bytes for predictionType.
-
setPredictionType
public AutoMlTablesInputs.Builder setPredictionType(String value)
The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.
string prediction_type = 1;
- Parameters:
value
- The predictionType to set.- Returns:
- This builder for chaining.
-
clearPredictionType
public AutoMlTablesInputs.Builder clearPredictionType()
The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.
string prediction_type = 1;
- Returns:
- This builder for chaining.
-
setPredictionTypeBytes
public AutoMlTablesInputs.Builder setPredictionTypeBytes(com.google.protobuf.ByteString value)
The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.
string prediction_type = 1;
- Parameters:
value
- The bytes for predictionType to set.- Returns:
- This builder for chaining.
-
getTargetColumn
public String getTargetColumn()
The column name of the target column that the model is to predict.
string target_column = 2;
- Specified by:
getTargetColumn
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The targetColumn.
-
getTargetColumnBytes
public com.google.protobuf.ByteString getTargetColumnBytes()
The column name of the target column that the model is to predict.
string target_column = 2;
- Specified by:
getTargetColumnBytes
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The bytes for targetColumn.
-
setTargetColumn
public AutoMlTablesInputs.Builder setTargetColumn(String value)
The column name of the target column that the model is to predict.
string target_column = 2;
- Parameters:
value
- The targetColumn to set.- Returns:
- This builder for chaining.
-
clearTargetColumn
public AutoMlTablesInputs.Builder clearTargetColumn()
The column name of the target column that the model is to predict.
string target_column = 2;
- Returns:
- This builder for chaining.
-
setTargetColumnBytes
public AutoMlTablesInputs.Builder setTargetColumnBytes(com.google.protobuf.ByteString value)
The column name of the target column that the model is to predict.
string target_column = 2;
- Parameters:
value
- The bytes for targetColumn to set.- Returns:
- This builder for chaining.
-
getTransformationsList
public List<AutoMlTablesInputs.Transformation> getTransformationsList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
- Specified by:
getTransformationsList
in interfaceAutoMlTablesInputsOrBuilder
-
getTransformationsCount
public int getTransformationsCount()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
- Specified by:
getTransformationsCount
in interfaceAutoMlTablesInputsOrBuilder
-
getTransformations
public AutoMlTablesInputs.Transformation getTransformations(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
- Specified by:
getTransformations
in interfaceAutoMlTablesInputsOrBuilder
-
setTransformations
public AutoMlTablesInputs.Builder setTransformations(int index, AutoMlTablesInputs.Transformation value)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
setTransformations
public AutoMlTablesInputs.Builder setTransformations(int index, AutoMlTablesInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
addTransformations
public AutoMlTablesInputs.Builder addTransformations(AutoMlTablesInputs.Transformation value)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
addTransformations
public AutoMlTablesInputs.Builder addTransformations(int index, AutoMlTablesInputs.Transformation value)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
addTransformations
public AutoMlTablesInputs.Builder addTransformations(AutoMlTablesInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
addTransformations
public AutoMlTablesInputs.Builder addTransformations(int index, AutoMlTablesInputs.Transformation.Builder builderForValue)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
addAllTransformations
public AutoMlTablesInputs.Builder addAllTransformations(Iterable<? extends AutoMlTablesInputs.Transformation> values)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
clearTransformations
public AutoMlTablesInputs.Builder clearTransformations()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
removeTransformations
public AutoMlTablesInputs.Builder removeTransformations(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
getTransformationsBuilder
public AutoMlTablesInputs.Transformation.Builder getTransformationsBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
getTransformationsOrBuilder
public AutoMlTablesInputs.TransformationOrBuilder getTransformationsOrBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
- Specified by:
getTransformationsOrBuilder
in interfaceAutoMlTablesInputsOrBuilder
-
getTransformationsOrBuilderList
public List<? extends AutoMlTablesInputs.TransformationOrBuilder> getTransformationsOrBuilderList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
- Specified by:
getTransformationsOrBuilderList
in interfaceAutoMlTablesInputsOrBuilder
-
addTransformationsBuilder
public AutoMlTablesInputs.Transformation.Builder addTransformationsBuilder()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
addTransformationsBuilder
public AutoMlTablesInputs.Transformation.Builder addTransformationsBuilder(int index)
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
getTransformationsBuilderList
public List<AutoMlTablesInputs.Transformation.Builder> getTransformationsBuilderList()
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
repeated .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
-
getOptimizationObjective
public String getOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" (default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Specified by:
getOptimizationObjective
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The optimizationObjective.
-
getOptimizationObjectiveBytes
public com.google.protobuf.ByteString getOptimizationObjectiveBytes()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" (default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Specified by:
getOptimizationObjectiveBytes
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The bytes for optimizationObjective.
-
setOptimizationObjective
public AutoMlTablesInputs.Builder setOptimizationObjective(String value)
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" (default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Parameters:
value
- The optimizationObjective to set.- Returns:
- This builder for chaining.
-
clearOptimizationObjective
public AutoMlTablesInputs.Builder clearOptimizationObjective()
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" (default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Returns:
- This builder for chaining.
-
setOptimizationObjectiveBytes
public AutoMlTablesInputs.Builder setOptimizationObjectiveBytes(com.google.protobuf.ByteString value)
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" (default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
- Parameters:
value
- The bytes for optimizationObjective to set.- Returns:
- This builder for chaining.
-
getTrainBudgetMilliNodeHours
public long getTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 7;
- Specified by:
getTrainBudgetMilliNodeHours
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The trainBudgetMilliNodeHours.
-
setTrainBudgetMilliNodeHours
public AutoMlTablesInputs.Builder setTrainBudgetMilliNodeHours(long value)
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 7;
- Parameters:
value
- The trainBudgetMilliNodeHours to set.- Returns:
- This builder for chaining.
-
clearTrainBudgetMilliNodeHours
public AutoMlTablesInputs.Builder clearTrainBudgetMilliNodeHours()
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
int64 train_budget_milli_node_hours = 7;
- Returns:
- This builder for chaining.
-
getDisableEarlyStopping
public boolean getDisableEarlyStopping()
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 8;
- Specified by:
getDisableEarlyStopping
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The disableEarlyStopping.
-
setDisableEarlyStopping
public AutoMlTablesInputs.Builder setDisableEarlyStopping(boolean value)
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 8;
- Parameters:
value
- The disableEarlyStopping to set.- Returns:
- This builder for chaining.
-
clearDisableEarlyStopping
public AutoMlTablesInputs.Builder clearDisableEarlyStopping()
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 8;
- Returns:
- This builder for chaining.
-
getWeightColumnName
public String getWeightColumnName()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column_name = 9;
- Specified by:
getWeightColumnName
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The weightColumnName.
-
getWeightColumnNameBytes
public com.google.protobuf.ByteString getWeightColumnNameBytes()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column_name = 9;
- Specified by:
getWeightColumnNameBytes
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The bytes for weightColumnName.
-
setWeightColumnName
public AutoMlTablesInputs.Builder setWeightColumnName(String value)
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column_name = 9;
- Parameters:
value
- The weightColumnName to set.- Returns:
- This builder for chaining.
-
clearWeightColumnName
public AutoMlTablesInputs.Builder clearWeightColumnName()
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column_name = 9;
- Returns:
- This builder for chaining.
-
setWeightColumnNameBytes
public AutoMlTablesInputs.Builder setWeightColumnNameBytes(com.google.protobuf.ByteString value)
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
string weight_column_name = 9;
- Parameters:
value
- The bytes for weightColumnName to set.- Returns:
- This builder for chaining.
-
hasExportEvaluatedDataItemsConfig
public boolean hasExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
- Specified by:
hasExportEvaluatedDataItemsConfig
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- Whether the exportEvaluatedDataItemsConfig field is set.
-
getExportEvaluatedDataItemsConfig
public ExportEvaluatedDataItemsConfig getExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
- Specified by:
getExportEvaluatedDataItemsConfig
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The exportEvaluatedDataItemsConfig.
-
setExportEvaluatedDataItemsConfig
public AutoMlTablesInputs.Builder setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
-
setExportEvaluatedDataItemsConfig
public AutoMlTablesInputs.Builder setExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig.Builder builderForValue)
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
-
mergeExportEvaluatedDataItemsConfig
public AutoMlTablesInputs.Builder mergeExportEvaluatedDataItemsConfig(ExportEvaluatedDataItemsConfig value)
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
-
clearExportEvaluatedDataItemsConfig
public AutoMlTablesInputs.Builder clearExportEvaluatedDataItemsConfig()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
-
getExportEvaluatedDataItemsConfigBuilder
public ExportEvaluatedDataItemsConfig.Builder getExportEvaluatedDataItemsConfigBuilder()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
-
getExportEvaluatedDataItemsConfigOrBuilder
public ExportEvaluatedDataItemsConfigOrBuilder getExportEvaluatedDataItemsConfigOrBuilder()
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
- Specified by:
getExportEvaluatedDataItemsConfigOrBuilder
in interfaceAutoMlTablesInputsOrBuilder
-
getAdditionalExperimentsList
public com.google.protobuf.ProtocolStringList getAdditionalExperimentsList()
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Specified by:
getAdditionalExperimentsList
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- A list containing the additionalExperiments.
-
getAdditionalExperimentsCount
public int getAdditionalExperimentsCount()
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Specified by:
getAdditionalExperimentsCount
in interfaceAutoMlTablesInputsOrBuilder
- Returns:
- The count of additionalExperiments.
-
getAdditionalExperiments
public String getAdditionalExperiments(int index)
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Specified by:
getAdditionalExperiments
in interfaceAutoMlTablesInputsOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The additionalExperiments at the given index.
-
getAdditionalExperimentsBytes
public com.google.protobuf.ByteString getAdditionalExperimentsBytes(int index)
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Specified by:
getAdditionalExperimentsBytes
in interfaceAutoMlTablesInputsOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the additionalExperiments at the given index.
-
setAdditionalExperiments
public AutoMlTablesInputs.Builder setAdditionalExperiments(int index, String value)
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Parameters:
index
- The index to set the value at.value
- The additionalExperiments to set.- Returns:
- This builder for chaining.
-
addAdditionalExperiments
public AutoMlTablesInputs.Builder addAdditionalExperiments(String value)
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Parameters:
value
- The additionalExperiments to add.- Returns:
- This builder for chaining.
-
addAllAdditionalExperiments
public AutoMlTablesInputs.Builder addAllAdditionalExperiments(Iterable<String> values)
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Parameters:
values
- The additionalExperiments to add.- Returns:
- This builder for chaining.
-
clearAdditionalExperiments
public AutoMlTablesInputs.Builder clearAdditionalExperiments()
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Returns:
- This builder for chaining.
-
addAdditionalExperimentsBytes
public AutoMlTablesInputs.Builder addAdditionalExperimentsBytes(com.google.protobuf.ByteString value)
Additional experiment flags for the Tables training pipeline.
repeated string additional_experiments = 11;
- Parameters:
value
- The bytes of the additionalExperiments to add.- Returns:
- This builder for chaining.
-
setUnknownFields
public final AutoMlTablesInputs.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
mergeUnknownFields
public final AutoMlTablesInputs.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<AutoMlTablesInputs.Builder>
-
-