Class ModelDeploymentMonitoringJob.Builder

  • All Implemented Interfaces:
    ModelDeploymentMonitoringJobOrBuilder, com.google.protobuf.Message.Builder, com.google.protobuf.MessageLite.Builder, com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder, Cloneable
    Enclosing class:
    ModelDeploymentMonitoringJob

    public static final class ModelDeploymentMonitoringJob.Builder
    extends com.google.protobuf.GeneratedMessageV3.Builder<ModelDeploymentMonitoringJob.Builder>
    implements ModelDeploymentMonitoringJobOrBuilder
     Represents a job that runs periodically to monitor the deployed models in an
     endpoint. It will analyze the logged training & prediction data to detect any
     abnormal behaviors.
     
    Protobuf type google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob
    • Method Detail

      • getDescriptor

        public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
      • internalGetMapField

        protected com.google.protobuf.MapField internalGetMapField​(int number)
        Overrides:
        internalGetMapField in class com.google.protobuf.GeneratedMessageV3.Builder<ModelDeploymentMonitoringJob.Builder>
      • internalGetMutableMapField

        protected com.google.protobuf.MapField internalGetMutableMapField​(int number)
        Overrides:
        internalGetMutableMapField in class com.google.protobuf.GeneratedMessageV3.Builder<ModelDeploymentMonitoringJob.Builder>
      • internalGetFieldAccessorTable

        protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
        Specified by:
        internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessageV3.Builder<ModelDeploymentMonitoringJob.Builder>
      • getDescriptorForType

        public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
        Specified by:
        getDescriptorForType in interface com.google.protobuf.Message.Builder
        Specified by:
        getDescriptorForType in interface com.google.protobuf.MessageOrBuilder
        Overrides:
        getDescriptorForType in class com.google.protobuf.GeneratedMessageV3.Builder<ModelDeploymentMonitoringJob.Builder>
      • getDefaultInstanceForType

        public ModelDeploymentMonitoringJob getDefaultInstanceForType()
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder
      • build

        public ModelDeploymentMonitoringJob build()
        Specified by:
        build in interface com.google.protobuf.Message.Builder
        Specified by:
        build in interface com.google.protobuf.MessageLite.Builder
      • buildPartial

        public ModelDeploymentMonitoringJob buildPartial()
        Specified by:
        buildPartial in interface com.google.protobuf.Message.Builder
        Specified by:
        buildPartial in interface com.google.protobuf.MessageLite.Builder
      • isInitialized

        public final boolean isInitialized()
        Specified by:
        isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
        Overrides:
        isInitialized in class com.google.protobuf.GeneratedMessageV3.Builder<ModelDeploymentMonitoringJob.Builder>
      • mergeFrom

        public ModelDeploymentMonitoringJob.Builder mergeFrom​(com.google.protobuf.CodedInputStream input,
                                                              com.google.protobuf.ExtensionRegistryLite extensionRegistry)
                                                       throws IOException
        Specified by:
        mergeFrom in interface com.google.protobuf.Message.Builder
        Specified by:
        mergeFrom in interface com.google.protobuf.MessageLite.Builder
        Overrides:
        mergeFrom in class com.google.protobuf.AbstractMessage.Builder<ModelDeploymentMonitoringJob.Builder>
        Throws:
        IOException
      • getName

        public String getName()
         Output only. Resource name of a ModelDeploymentMonitoringJob.
         
        string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getName in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The name.
      • getNameBytes

        public com.google.protobuf.ByteString getNameBytes()
         Output only. Resource name of a ModelDeploymentMonitoringJob.
         
        string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getNameBytes in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The bytes for name.
      • setName

        public ModelDeploymentMonitoringJob.Builder setName​(String value)
         Output only. Resource name of a ModelDeploymentMonitoringJob.
         
        string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Parameters:
        value - The name to set.
        Returns:
        This builder for chaining.
      • clearName

        public ModelDeploymentMonitoringJob.Builder clearName()
         Output only. Resource name of a ModelDeploymentMonitoringJob.
         
        string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Returns:
        This builder for chaining.
      • setNameBytes

        public ModelDeploymentMonitoringJob.Builder setNameBytes​(com.google.protobuf.ByteString value)
         Output only. Resource name of a ModelDeploymentMonitoringJob.
         
        string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Parameters:
        value - The bytes for name to set.
        Returns:
        This builder for chaining.
      • getDisplayName

        public String getDisplayName()
         Required. The user-defined name of the ModelDeploymentMonitoringJob.
         The name can be up to 128 characters long and can consist of any UTF-8
         characters.
         Display name of a ModelDeploymentMonitoringJob.
         
        string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
        Specified by:
        getDisplayName in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The displayName.
      • getDisplayNameBytes

        public com.google.protobuf.ByteString getDisplayNameBytes()
         Required. The user-defined name of the ModelDeploymentMonitoringJob.
         The name can be up to 128 characters long and can consist of any UTF-8
         characters.
         Display name of a ModelDeploymentMonitoringJob.
         
        string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
        Specified by:
        getDisplayNameBytes in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The bytes for displayName.
      • setDisplayName

        public ModelDeploymentMonitoringJob.Builder setDisplayName​(String value)
         Required. The user-defined name of the ModelDeploymentMonitoringJob.
         The name can be up to 128 characters long and can consist of any UTF-8
         characters.
         Display name of a ModelDeploymentMonitoringJob.
         
        string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
        Parameters:
        value - The displayName to set.
        Returns:
        This builder for chaining.
      • clearDisplayName

        public ModelDeploymentMonitoringJob.Builder clearDisplayName()
         Required. The user-defined name of the ModelDeploymentMonitoringJob.
         The name can be up to 128 characters long and can consist of any UTF-8
         characters.
         Display name of a ModelDeploymentMonitoringJob.
         
        string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
        Returns:
        This builder for chaining.
      • setDisplayNameBytes

        public ModelDeploymentMonitoringJob.Builder setDisplayNameBytes​(com.google.protobuf.ByteString value)
         Required. The user-defined name of the ModelDeploymentMonitoringJob.
         The name can be up to 128 characters long and can consist of any UTF-8
         characters.
         Display name of a ModelDeploymentMonitoringJob.
         
        string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
        Parameters:
        value - The bytes for displayName to set.
        Returns:
        This builder for chaining.
      • getEndpoint

        public String getEndpoint()
         Required. Endpoint resource name.
         Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
         
        string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
        Specified by:
        getEndpoint in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The endpoint.
      • getEndpointBytes

        public com.google.protobuf.ByteString getEndpointBytes()
         Required. Endpoint resource name.
         Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
         
        string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
        Specified by:
        getEndpointBytes in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The bytes for endpoint.
      • setEndpoint

        public ModelDeploymentMonitoringJob.Builder setEndpoint​(String value)
         Required. Endpoint resource name.
         Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
         
        string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
        Parameters:
        value - The endpoint to set.
        Returns:
        This builder for chaining.
      • clearEndpoint

        public ModelDeploymentMonitoringJob.Builder clearEndpoint()
         Required. Endpoint resource name.
         Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
         
        string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
        Returns:
        This builder for chaining.
      • setEndpointBytes

        public ModelDeploymentMonitoringJob.Builder setEndpointBytes​(com.google.protobuf.ByteString value)
         Required. Endpoint resource name.
         Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
         
        string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
        Parameters:
        value - The bytes for endpoint to set.
        Returns:
        This builder for chaining.
      • getStateValue

        public int getStateValue()
         Output only. The detailed state of the monitoring job.
         When the job is still creating, the state will be 'PENDING'.
         Once the job is successfully created, the state will be 'RUNNING'.
         Pause the job, the state will be 'PAUSED'.
         Resume the job, the state will return to 'RUNNING'.
         
        .google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getStateValue in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The enum numeric value on the wire for state.
      • setStateValue

        public ModelDeploymentMonitoringJob.Builder setStateValue​(int value)
         Output only. The detailed state of the monitoring job.
         When the job is still creating, the state will be 'PENDING'.
         Once the job is successfully created, the state will be 'RUNNING'.
         Pause the job, the state will be 'PAUSED'.
         Resume the job, the state will return to 'RUNNING'.
         
        .google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Parameters:
        value - The enum numeric value on the wire for state to set.
        Returns:
        This builder for chaining.
      • getState

        public JobState getState()
         Output only. The detailed state of the monitoring job.
         When the job is still creating, the state will be 'PENDING'.
         Once the job is successfully created, the state will be 'RUNNING'.
         Pause the job, the state will be 'PAUSED'.
         Resume the job, the state will return to 'RUNNING'.
         
        .google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getState in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The state.
      • setState

        public ModelDeploymentMonitoringJob.Builder setState​(JobState value)
         Output only. The detailed state of the monitoring job.
         When the job is still creating, the state will be 'PENDING'.
         Once the job is successfully created, the state will be 'RUNNING'.
         Pause the job, the state will be 'PAUSED'.
         Resume the job, the state will return to 'RUNNING'.
         
        .google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Parameters:
        value - The state to set.
        Returns:
        This builder for chaining.
      • clearState

        public ModelDeploymentMonitoringJob.Builder clearState()
         Output only. The detailed state of the monitoring job.
         When the job is still creating, the state will be 'PENDING'.
         Once the job is successfully created, the state will be 'RUNNING'.
         Pause the job, the state will be 'PAUSED'.
         Resume the job, the state will return to 'RUNNING'.
         
        .google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Returns:
        This builder for chaining.
      • getScheduleStateValue

        public int getScheduleStateValue()
         Output only. Schedule state when the monitoring job is in Running state.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.MonitoringScheduleState schedule_state = 5 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getScheduleStateValue in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The enum numeric value on the wire for scheduleState.
      • setScheduleStateValue

        public ModelDeploymentMonitoringJob.Builder setScheduleStateValue​(int value)
         Output only. Schedule state when the monitoring job is in Running state.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.MonitoringScheduleState schedule_state = 5 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Parameters:
        value - The enum numeric value on the wire for scheduleState to set.
        Returns:
        This builder for chaining.
      • setScheduleState

        public ModelDeploymentMonitoringJob.Builder setScheduleState​(ModelDeploymentMonitoringJob.MonitoringScheduleState value)
         Output only. Schedule state when the monitoring job is in Running state.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.MonitoringScheduleState schedule_state = 5 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Parameters:
        value - The scheduleState to set.
        Returns:
        This builder for chaining.
      • clearScheduleState

        public ModelDeploymentMonitoringJob.Builder clearScheduleState()
         Output only. Schedule state when the monitoring job is in Running state.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.MonitoringScheduleState schedule_state = 5 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Returns:
        This builder for chaining.
      • hasLatestMonitoringPipelineMetadata

        public boolean hasLatestMonitoringPipelineMetadata()
         Output only. Latest triggered monitoring pipeline metadata.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata latest_monitoring_pipeline_metadata = 25 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        hasLatestMonitoringPipelineMetadata in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the latestMonitoringPipelineMetadata field is set.
      • clearLatestMonitoringPipelineMetadata

        public ModelDeploymentMonitoringJob.Builder clearLatestMonitoringPipelineMetadata()
         Output only. Latest triggered monitoring pipeline metadata.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata latest_monitoring_pipeline_metadata = 25 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getLatestMonitoringPipelineMetadataBuilder

        public ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata.Builder getLatestMonitoringPipelineMetadataBuilder()
         Output only. Latest triggered monitoring pipeline metadata.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata latest_monitoring_pipeline_metadata = 25 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getModelDeploymentMonitoringObjectiveConfigsCount

        public int getModelDeploymentMonitoringObjectiveConfigsCount()
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
        Specified by:
        getModelDeploymentMonitoringObjectiveConfigsCount in interface ModelDeploymentMonitoringJobOrBuilder
      • setModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder setModelDeploymentMonitoringObjectiveConfigs​(int index,
                                                                                                 ModelDeploymentMonitoringObjectiveConfig value)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • setModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder setModelDeploymentMonitoringObjectiveConfigs​(int index,
                                                                                                 ModelDeploymentMonitoringObjectiveConfig.Builder builderForValue)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder addModelDeploymentMonitoringObjectiveConfigs​(ModelDeploymentMonitoringObjectiveConfig value)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder addModelDeploymentMonitoringObjectiveConfigs​(int index,
                                                                                                 ModelDeploymentMonitoringObjectiveConfig value)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder addModelDeploymentMonitoringObjectiveConfigs​(ModelDeploymentMonitoringObjectiveConfig.Builder builderForValue)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder addModelDeploymentMonitoringObjectiveConfigs​(int index,
                                                                                                 ModelDeploymentMonitoringObjectiveConfig.Builder builderForValue)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addAllModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder addAllModelDeploymentMonitoringObjectiveConfigs​(Iterable<? extends ModelDeploymentMonitoringObjectiveConfig> values)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • clearModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder clearModelDeploymentMonitoringObjectiveConfigs()
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • removeModelDeploymentMonitoringObjectiveConfigs

        public ModelDeploymentMonitoringJob.Builder removeModelDeploymentMonitoringObjectiveConfigs​(int index)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • getModelDeploymentMonitoringObjectiveConfigsBuilder

        public ModelDeploymentMonitoringObjectiveConfig.Builder getModelDeploymentMonitoringObjectiveConfigsBuilder​(int index)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addModelDeploymentMonitoringObjectiveConfigsBuilder

        public ModelDeploymentMonitoringObjectiveConfig.Builder addModelDeploymentMonitoringObjectiveConfigsBuilder()
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • addModelDeploymentMonitoringObjectiveConfigsBuilder

        public ModelDeploymentMonitoringObjectiveConfig.Builder addModelDeploymentMonitoringObjectiveConfigsBuilder​(int index)
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • getModelDeploymentMonitoringObjectiveConfigsBuilderList

        public List<ModelDeploymentMonitoringObjectiveConfig.Builder> getModelDeploymentMonitoringObjectiveConfigsBuilderList()
         Required. The config for monitoring objectives. This is a per DeployedModel
         config. Each DeployedModel needs to be configured separately.
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];
      • hasModelDeploymentMonitoringScheduleConfig

        public boolean hasModelDeploymentMonitoringScheduleConfig()
         Required. Schedule config for running the monitoring job.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];
        Specified by:
        hasModelDeploymentMonitoringScheduleConfig in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the modelDeploymentMonitoringScheduleConfig field is set.
      • setModelDeploymentMonitoringScheduleConfig

        public ModelDeploymentMonitoringJob.Builder setModelDeploymentMonitoringScheduleConfig​(ModelDeploymentMonitoringScheduleConfig value)
         Required. Schedule config for running the monitoring job.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];
      • setModelDeploymentMonitoringScheduleConfig

        public ModelDeploymentMonitoringJob.Builder setModelDeploymentMonitoringScheduleConfig​(ModelDeploymentMonitoringScheduleConfig.Builder builderForValue)
         Required. Schedule config for running the monitoring job.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];
      • mergeModelDeploymentMonitoringScheduleConfig

        public ModelDeploymentMonitoringJob.Builder mergeModelDeploymentMonitoringScheduleConfig​(ModelDeploymentMonitoringScheduleConfig value)
         Required. Schedule config for running the monitoring job.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];
      • clearModelDeploymentMonitoringScheduleConfig

        public ModelDeploymentMonitoringJob.Builder clearModelDeploymentMonitoringScheduleConfig()
         Required. Schedule config for running the monitoring job.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];
      • getModelDeploymentMonitoringScheduleConfigBuilder

        public ModelDeploymentMonitoringScheduleConfig.Builder getModelDeploymentMonitoringScheduleConfigBuilder()
         Required. Schedule config for running the monitoring job.
         
        .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];
      • hasLoggingSamplingStrategy

        public boolean hasLoggingSamplingStrategy()
         Required. Sample Strategy for logging.
         
        .google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];
        Specified by:
        hasLoggingSamplingStrategy in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the loggingSamplingStrategy field is set.
      • setLoggingSamplingStrategy

        public ModelDeploymentMonitoringJob.Builder setLoggingSamplingStrategy​(SamplingStrategy value)
         Required. Sample Strategy for logging.
         
        .google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];
      • setLoggingSamplingStrategy

        public ModelDeploymentMonitoringJob.Builder setLoggingSamplingStrategy​(SamplingStrategy.Builder builderForValue)
         Required. Sample Strategy for logging.
         
        .google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];
      • mergeLoggingSamplingStrategy

        public ModelDeploymentMonitoringJob.Builder mergeLoggingSamplingStrategy​(SamplingStrategy value)
         Required. Sample Strategy for logging.
         
        .google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];
      • clearLoggingSamplingStrategy

        public ModelDeploymentMonitoringJob.Builder clearLoggingSamplingStrategy()
         Required. Sample Strategy for logging.
         
        .google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];
      • getLoggingSamplingStrategyBuilder

        public SamplingStrategy.Builder getLoggingSamplingStrategyBuilder()
         Required. Sample Strategy for logging.
         
        .google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];
      • hasModelMonitoringAlertConfig

        public boolean hasModelMonitoringAlertConfig()
         Alert config for model monitoring.
         
        .google.cloud.aiplatform.v1beta1.ModelMonitoringAlertConfig model_monitoring_alert_config = 15;
        Specified by:
        hasModelMonitoringAlertConfig in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the modelMonitoringAlertConfig field is set.
      • clearModelMonitoringAlertConfig

        public ModelDeploymentMonitoringJob.Builder clearModelMonitoringAlertConfig()
         Alert config for model monitoring.
         
        .google.cloud.aiplatform.v1beta1.ModelMonitoringAlertConfig model_monitoring_alert_config = 15;
      • getModelMonitoringAlertConfigBuilder

        public ModelMonitoringAlertConfig.Builder getModelMonitoringAlertConfigBuilder()
         Alert config for model monitoring.
         
        .google.cloud.aiplatform.v1beta1.ModelMonitoringAlertConfig model_monitoring_alert_config = 15;
      • getPredictInstanceSchemaUri

        public String getPredictInstanceSchemaUri()
         YAML schema file uri describing the format of a single instance,
         which are given to format this Endpoint's prediction (and explanation).
         If not set, we will generate predict schema from collected predict
         requests.
         
        string predict_instance_schema_uri = 9;
        Specified by:
        getPredictInstanceSchemaUri in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The predictInstanceSchemaUri.
      • getPredictInstanceSchemaUriBytes

        public com.google.protobuf.ByteString getPredictInstanceSchemaUriBytes()
         YAML schema file uri describing the format of a single instance,
         which are given to format this Endpoint's prediction (and explanation).
         If not set, we will generate predict schema from collected predict
         requests.
         
        string predict_instance_schema_uri = 9;
        Specified by:
        getPredictInstanceSchemaUriBytes in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The bytes for predictInstanceSchemaUri.
      • setPredictInstanceSchemaUri

        public ModelDeploymentMonitoringJob.Builder setPredictInstanceSchemaUri​(String value)
         YAML schema file uri describing the format of a single instance,
         which are given to format this Endpoint's prediction (and explanation).
         If not set, we will generate predict schema from collected predict
         requests.
         
        string predict_instance_schema_uri = 9;
        Parameters:
        value - The predictInstanceSchemaUri to set.
        Returns:
        This builder for chaining.
      • clearPredictInstanceSchemaUri

        public ModelDeploymentMonitoringJob.Builder clearPredictInstanceSchemaUri()
         YAML schema file uri describing the format of a single instance,
         which are given to format this Endpoint's prediction (and explanation).
         If not set, we will generate predict schema from collected predict
         requests.
         
        string predict_instance_schema_uri = 9;
        Returns:
        This builder for chaining.
      • setPredictInstanceSchemaUriBytes

        public ModelDeploymentMonitoringJob.Builder setPredictInstanceSchemaUriBytes​(com.google.protobuf.ByteString value)
         YAML schema file uri describing the format of a single instance,
         which are given to format this Endpoint's prediction (and explanation).
         If not set, we will generate predict schema from collected predict
         requests.
         
        string predict_instance_schema_uri = 9;
        Parameters:
        value - The bytes for predictInstanceSchemaUri to set.
        Returns:
        This builder for chaining.
      • hasSamplePredictInstance

        public boolean hasSamplePredictInstance()
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
        Specified by:
        hasSamplePredictInstance in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the samplePredictInstance field is set.
      • getSamplePredictInstance

        public com.google.protobuf.Value getSamplePredictInstance()
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
        Specified by:
        getSamplePredictInstance in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The samplePredictInstance.
      • setSamplePredictInstance

        public ModelDeploymentMonitoringJob.Builder setSamplePredictInstance​(com.google.protobuf.Value value)
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
      • setSamplePredictInstance

        public ModelDeploymentMonitoringJob.Builder setSamplePredictInstance​(com.google.protobuf.Value.Builder builderForValue)
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
      • mergeSamplePredictInstance

        public ModelDeploymentMonitoringJob.Builder mergeSamplePredictInstance​(com.google.protobuf.Value value)
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
      • clearSamplePredictInstance

        public ModelDeploymentMonitoringJob.Builder clearSamplePredictInstance()
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
      • getSamplePredictInstanceBuilder

        public com.google.protobuf.Value.Builder getSamplePredictInstanceBuilder()
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
      • getSamplePredictInstanceOrBuilder

        public com.google.protobuf.ValueOrBuilder getSamplePredictInstanceOrBuilder()
         Sample Predict instance, same format as
         [PredictRequest.instances][google.cloud.aiplatform.v1beta1.PredictRequest.instances],
         this can be set as a replacement of
         [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri].
         If not set, we will generate predict schema from collected predict
         requests.
         
        .google.protobuf.Value sample_predict_instance = 19;
        Specified by:
        getSamplePredictInstanceOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • getAnalysisInstanceSchemaUri

        public String getAnalysisInstanceSchemaUri()
         YAML schema file uri describing the format of a single instance that you
         want Tensorflow Data Validation (TFDV) to analyze.
        
         If this field is empty, all the feature data types are inferred from
         [predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri],
         meaning that TFDV will use the data in the exact format(data type) as
         prediction request/response.
         If there are any data type differences between predict instance and TFDV
         instance, this field can be used to override the schema.
         For models trained with Vertex AI, this field must be set as all the
         fields in predict instance formatted as string.
         
        string analysis_instance_schema_uri = 16;
        Specified by:
        getAnalysisInstanceSchemaUri in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The analysisInstanceSchemaUri.
      • getAnalysisInstanceSchemaUriBytes

        public com.google.protobuf.ByteString getAnalysisInstanceSchemaUriBytes()
         YAML schema file uri describing the format of a single instance that you
         want Tensorflow Data Validation (TFDV) to analyze.
        
         If this field is empty, all the feature data types are inferred from
         [predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri],
         meaning that TFDV will use the data in the exact format(data type) as
         prediction request/response.
         If there are any data type differences between predict instance and TFDV
         instance, this field can be used to override the schema.
         For models trained with Vertex AI, this field must be set as all the
         fields in predict instance formatted as string.
         
        string analysis_instance_schema_uri = 16;
        Specified by:
        getAnalysisInstanceSchemaUriBytes in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The bytes for analysisInstanceSchemaUri.
      • setAnalysisInstanceSchemaUri

        public ModelDeploymentMonitoringJob.Builder setAnalysisInstanceSchemaUri​(String value)
         YAML schema file uri describing the format of a single instance that you
         want Tensorflow Data Validation (TFDV) to analyze.
        
         If this field is empty, all the feature data types are inferred from
         [predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri],
         meaning that TFDV will use the data in the exact format(data type) as
         prediction request/response.
         If there are any data type differences between predict instance and TFDV
         instance, this field can be used to override the schema.
         For models trained with Vertex AI, this field must be set as all the
         fields in predict instance formatted as string.
         
        string analysis_instance_schema_uri = 16;
        Parameters:
        value - The analysisInstanceSchemaUri to set.
        Returns:
        This builder for chaining.
      • clearAnalysisInstanceSchemaUri

        public ModelDeploymentMonitoringJob.Builder clearAnalysisInstanceSchemaUri()
         YAML schema file uri describing the format of a single instance that you
         want Tensorflow Data Validation (TFDV) to analyze.
        
         If this field is empty, all the feature data types are inferred from
         [predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri],
         meaning that TFDV will use the data in the exact format(data type) as
         prediction request/response.
         If there are any data type differences between predict instance and TFDV
         instance, this field can be used to override the schema.
         For models trained with Vertex AI, this field must be set as all the
         fields in predict instance formatted as string.
         
        string analysis_instance_schema_uri = 16;
        Returns:
        This builder for chaining.
      • setAnalysisInstanceSchemaUriBytes

        public ModelDeploymentMonitoringJob.Builder setAnalysisInstanceSchemaUriBytes​(com.google.protobuf.ByteString value)
         YAML schema file uri describing the format of a single instance that you
         want Tensorflow Data Validation (TFDV) to analyze.
        
         If this field is empty, all the feature data types are inferred from
         [predict_instance_schema_uri][google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.predict_instance_schema_uri],
         meaning that TFDV will use the data in the exact format(data type) as
         prediction request/response.
         If there are any data type differences between predict instance and TFDV
         instance, this field can be used to override the schema.
         For models trained with Vertex AI, this field must be set as all the
         fields in predict instance formatted as string.
         
        string analysis_instance_schema_uri = 16;
        Parameters:
        value - The bytes for analysisInstanceSchemaUri to set.
        Returns:
        This builder for chaining.
      • getBigqueryTablesList

        public List<ModelDeploymentMonitoringBigQueryTable> getBigqueryTablesList()
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getBigqueryTablesList in interface ModelDeploymentMonitoringJobOrBuilder
      • getBigqueryTablesCount

        public int getBigqueryTablesCount()
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getBigqueryTablesCount in interface ModelDeploymentMonitoringJobOrBuilder
      • getBigqueryTables

        public ModelDeploymentMonitoringBigQueryTable getBigqueryTables​(int index)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getBigqueryTables in interface ModelDeploymentMonitoringJobOrBuilder
      • setBigqueryTables

        public ModelDeploymentMonitoringJob.Builder setBigqueryTables​(int index,
                                                                      ModelDeploymentMonitoringBigQueryTable value)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • setBigqueryTables

        public ModelDeploymentMonitoringJob.Builder setBigqueryTables​(int index,
                                                                      ModelDeploymentMonitoringBigQueryTable.Builder builderForValue)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • addBigqueryTables

        public ModelDeploymentMonitoringJob.Builder addBigqueryTables​(ModelDeploymentMonitoringBigQueryTable value)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • addBigqueryTables

        public ModelDeploymentMonitoringJob.Builder addBigqueryTables​(int index,
                                                                      ModelDeploymentMonitoringBigQueryTable value)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • addBigqueryTables

        public ModelDeploymentMonitoringJob.Builder addBigqueryTables​(ModelDeploymentMonitoringBigQueryTable.Builder builderForValue)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • addBigqueryTables

        public ModelDeploymentMonitoringJob.Builder addBigqueryTables​(int index,
                                                                      ModelDeploymentMonitoringBigQueryTable.Builder builderForValue)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • addAllBigqueryTables

        public ModelDeploymentMonitoringJob.Builder addAllBigqueryTables​(Iterable<? extends ModelDeploymentMonitoringBigQueryTable> values)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • clearBigqueryTables

        public ModelDeploymentMonitoringJob.Builder clearBigqueryTables()
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • removeBigqueryTables

        public ModelDeploymentMonitoringJob.Builder removeBigqueryTables​(int index)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getBigqueryTablesBuilder

        public ModelDeploymentMonitoringBigQueryTable.Builder getBigqueryTablesBuilder​(int index)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getBigqueryTablesOrBuilder

        public ModelDeploymentMonitoringBigQueryTableOrBuilder getBigqueryTablesOrBuilder​(int index)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getBigqueryTablesOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • getBigqueryTablesOrBuilderList

        public List<? extends ModelDeploymentMonitoringBigQueryTableOrBuilder> getBigqueryTablesOrBuilderList()
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getBigqueryTablesOrBuilderList in interface ModelDeploymentMonitoringJobOrBuilder
      • addBigqueryTablesBuilder

        public ModelDeploymentMonitoringBigQueryTable.Builder addBigqueryTablesBuilder()
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • addBigqueryTablesBuilder

        public ModelDeploymentMonitoringBigQueryTable.Builder addBigqueryTablesBuilder​(int index)
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getBigqueryTablesBuilderList

        public List<ModelDeploymentMonitoringBigQueryTable.Builder> getBigqueryTablesBuilderList()
         Output only. The created bigquery tables for the job under customer
         project. Customer could do their own query & analysis. There could be 4 log
         tables in maximum:
         1. Training data logging predict request/response
         2. Serving data logging predict request/response
         
        repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • hasLogTtl

        public boolean hasLogTtl()
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
        Specified by:
        hasLogTtl in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the logTtl field is set.
      • getLogTtl

        public com.google.protobuf.Duration getLogTtl()
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
        Specified by:
        getLogTtl in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The logTtl.
      • setLogTtl

        public ModelDeploymentMonitoringJob.Builder setLogTtl​(com.google.protobuf.Duration value)
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
      • setLogTtl

        public ModelDeploymentMonitoringJob.Builder setLogTtl​(com.google.protobuf.Duration.Builder builderForValue)
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
      • mergeLogTtl

        public ModelDeploymentMonitoringJob.Builder mergeLogTtl​(com.google.protobuf.Duration value)
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
      • clearLogTtl

        public ModelDeploymentMonitoringJob.Builder clearLogTtl()
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
      • getLogTtlBuilder

        public com.google.protobuf.Duration.Builder getLogTtlBuilder()
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
      • getLogTtlOrBuilder

        public com.google.protobuf.DurationOrBuilder getLogTtlOrBuilder()
         The TTL of BigQuery tables in user projects which stores logs.
         A day is the basic unit of the TTL and we take the ceil of TTL/86400(a
         day). e.g. { second: 3600} indicates ttl = 1 day.
         
        .google.protobuf.Duration log_ttl = 17;
        Specified by:
        getLogTtlOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • getLabelsCount

        public int getLabelsCount()
        Description copied from interface: ModelDeploymentMonitoringJobOrBuilder
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
        Specified by:
        getLabelsCount in interface ModelDeploymentMonitoringJobOrBuilder
      • containsLabels

        public boolean containsLabels​(String key)
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
        Specified by:
        containsLabels in interface ModelDeploymentMonitoringJobOrBuilder
      • getLabelsMap

        public Map<String,​String> getLabelsMap()
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
        Specified by:
        getLabelsMap in interface ModelDeploymentMonitoringJobOrBuilder
      • getLabelsOrDefault

        public String getLabelsOrDefault​(String key,
                                         String defaultValue)
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
        Specified by:
        getLabelsOrDefault in interface ModelDeploymentMonitoringJobOrBuilder
      • getLabelsOrThrow

        public String getLabelsOrThrow​(String key)
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
        Specified by:
        getLabelsOrThrow in interface ModelDeploymentMonitoringJobOrBuilder
      • removeLabels

        public ModelDeploymentMonitoringJob.Builder removeLabels​(String key)
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
      • getMutableLabels

        @Deprecated
        public Map<String,​String> getMutableLabels()
        Deprecated.
        Use alternate mutation accessors instead.
      • putLabels

        public ModelDeploymentMonitoringJob.Builder putLabels​(String key,
                                                              String value)
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
      • putAllLabels

        public ModelDeploymentMonitoringJob.Builder putAllLabels​(Map<String,​String> values)
         The labels with user-defined metadata to organize your
         ModelDeploymentMonitoringJob.
        
         Label keys and values can be no longer than 64 characters
         (Unicode codepoints), can only contain lowercase letters, numeric
         characters, underscores and dashes. International characters are allowed.
        
         See https://goo.gl/xmQnxf for more information and examples of labels.
         
        map<string, string> labels = 11;
      • hasCreateTime

        public boolean hasCreateTime()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        hasCreateTime in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the createTime field is set.
      • getCreateTime

        public com.google.protobuf.Timestamp getCreateTime()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getCreateTime in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The createTime.
      • setCreateTime

        public ModelDeploymentMonitoringJob.Builder setCreateTime​(com.google.protobuf.Timestamp value)
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • setCreateTime

        public ModelDeploymentMonitoringJob.Builder setCreateTime​(com.google.protobuf.Timestamp.Builder builderForValue)
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • mergeCreateTime

        public ModelDeploymentMonitoringJob.Builder mergeCreateTime​(com.google.protobuf.Timestamp value)
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • clearCreateTime

        public ModelDeploymentMonitoringJob.Builder clearCreateTime()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getCreateTimeBuilder

        public com.google.protobuf.Timestamp.Builder getCreateTimeBuilder()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getCreateTimeOrBuilder

        public com.google.protobuf.TimestampOrBuilder getCreateTimeOrBuilder()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
         
        .google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getCreateTimeOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • hasUpdateTime

        public boolean hasUpdateTime()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        hasUpdateTime in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the updateTime field is set.
      • getUpdateTime

        public com.google.protobuf.Timestamp getUpdateTime()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getUpdateTime in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The updateTime.
      • setUpdateTime

        public ModelDeploymentMonitoringJob.Builder setUpdateTime​(com.google.protobuf.Timestamp value)
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • setUpdateTime

        public ModelDeploymentMonitoringJob.Builder setUpdateTime​(com.google.protobuf.Timestamp.Builder builderForValue)
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • mergeUpdateTime

        public ModelDeploymentMonitoringJob.Builder mergeUpdateTime​(com.google.protobuf.Timestamp value)
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • clearUpdateTime

        public ModelDeploymentMonitoringJob.Builder clearUpdateTime()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getUpdateTimeBuilder

        public com.google.protobuf.Timestamp.Builder getUpdateTimeBuilder()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getUpdateTimeOrBuilder

        public com.google.protobuf.TimestampOrBuilder getUpdateTimeOrBuilder()
         Output only. Timestamp when this ModelDeploymentMonitoringJob was updated
         most recently.
         
        .google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getUpdateTimeOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • hasNextScheduleTime

        public boolean hasNextScheduleTime()
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        hasNextScheduleTime in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the nextScheduleTime field is set.
      • getNextScheduleTime

        public com.google.protobuf.Timestamp getNextScheduleTime()
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getNextScheduleTime in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The nextScheduleTime.
      • setNextScheduleTime

        public ModelDeploymentMonitoringJob.Builder setNextScheduleTime​(com.google.protobuf.Timestamp value)
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • setNextScheduleTime

        public ModelDeploymentMonitoringJob.Builder setNextScheduleTime​(com.google.protobuf.Timestamp.Builder builderForValue)
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • mergeNextScheduleTime

        public ModelDeploymentMonitoringJob.Builder mergeNextScheduleTime​(com.google.protobuf.Timestamp value)
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • clearNextScheduleTime

        public ModelDeploymentMonitoringJob.Builder clearNextScheduleTime()
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getNextScheduleTimeBuilder

        public com.google.protobuf.Timestamp.Builder getNextScheduleTimeBuilder()
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getNextScheduleTimeOrBuilder

        public com.google.protobuf.TimestampOrBuilder getNextScheduleTimeOrBuilder()
         Output only. Timestamp when this monitoring pipeline will be scheduled to
         run for the next round.
         
        .google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getNextScheduleTimeOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • hasStatsAnomaliesBaseDirectory

        public boolean hasStatsAnomaliesBaseDirectory()
         Stats anomalies base folder path.
         
        .google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;
        Specified by:
        hasStatsAnomaliesBaseDirectory in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the statsAnomaliesBaseDirectory field is set.
      • setStatsAnomaliesBaseDirectory

        public ModelDeploymentMonitoringJob.Builder setStatsAnomaliesBaseDirectory​(GcsDestination value)
         Stats anomalies base folder path.
         
        .google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;
      • mergeStatsAnomaliesBaseDirectory

        public ModelDeploymentMonitoringJob.Builder mergeStatsAnomaliesBaseDirectory​(GcsDestination value)
         Stats anomalies base folder path.
         
        .google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;
      • clearStatsAnomaliesBaseDirectory

        public ModelDeploymentMonitoringJob.Builder clearStatsAnomaliesBaseDirectory()
         Stats anomalies base folder path.
         
        .google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;
      • getStatsAnomaliesBaseDirectoryBuilder

        public GcsDestination.Builder getStatsAnomaliesBaseDirectoryBuilder()
         Stats anomalies base folder path.
         
        .google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;
      • hasEncryptionSpec

        public boolean hasEncryptionSpec()
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
        Specified by:
        hasEncryptionSpec in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the encryptionSpec field is set.
      • getEncryptionSpec

        public EncryptionSpec getEncryptionSpec()
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
        Specified by:
        getEncryptionSpec in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The encryptionSpec.
      • setEncryptionSpec

        public ModelDeploymentMonitoringJob.Builder setEncryptionSpec​(EncryptionSpec value)
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
      • setEncryptionSpec

        public ModelDeploymentMonitoringJob.Builder setEncryptionSpec​(EncryptionSpec.Builder builderForValue)
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
      • mergeEncryptionSpec

        public ModelDeploymentMonitoringJob.Builder mergeEncryptionSpec​(EncryptionSpec value)
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
      • clearEncryptionSpec

        public ModelDeploymentMonitoringJob.Builder clearEncryptionSpec()
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
      • getEncryptionSpecBuilder

        public EncryptionSpec.Builder getEncryptionSpecBuilder()
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
      • getEncryptionSpecOrBuilder

        public EncryptionSpecOrBuilder getEncryptionSpecOrBuilder()
         Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If
         set, this ModelDeploymentMonitoringJob and all sub-resources of this
         ModelDeploymentMonitoringJob will be secured by this key.
         
        .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;
        Specified by:
        getEncryptionSpecOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder
      • getEnableMonitoringPipelineLogs

        public boolean getEnableMonitoringPipelineLogs()
         If true, the scheduled monitoring pipeline logs are sent to
         Google Cloud Logging, including pipeline status and anomalies detected.
         Please note the logs incur cost, which are subject to [Cloud Logging
         pricing](https://cloud.google.com/logging#pricing).
         
        bool enable_monitoring_pipeline_logs = 22;
        Specified by:
        getEnableMonitoringPipelineLogs in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The enableMonitoringPipelineLogs.
      • setEnableMonitoringPipelineLogs

        public ModelDeploymentMonitoringJob.Builder setEnableMonitoringPipelineLogs​(boolean value)
         If true, the scheduled monitoring pipeline logs are sent to
         Google Cloud Logging, including pipeline status and anomalies detected.
         Please note the logs incur cost, which are subject to [Cloud Logging
         pricing](https://cloud.google.com/logging#pricing).
         
        bool enable_monitoring_pipeline_logs = 22;
        Parameters:
        value - The enableMonitoringPipelineLogs to set.
        Returns:
        This builder for chaining.
      • clearEnableMonitoringPipelineLogs

        public ModelDeploymentMonitoringJob.Builder clearEnableMonitoringPipelineLogs()
         If true, the scheduled monitoring pipeline logs are sent to
         Google Cloud Logging, including pipeline status and anomalies detected.
         Please note the logs incur cost, which are subject to [Cloud Logging
         pricing](https://cloud.google.com/logging#pricing).
         
        bool enable_monitoring_pipeline_logs = 22;
        Returns:
        This builder for chaining.
      • hasError

        public boolean hasError()
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        hasError in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        Whether the error field is set.
      • getError

        public com.google.rpc.Status getError()
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getError in interface ModelDeploymentMonitoringJobOrBuilder
        Returns:
        The error.
      • setError

        public ModelDeploymentMonitoringJob.Builder setError​(com.google.rpc.Status value)
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • setError

        public ModelDeploymentMonitoringJob.Builder setError​(com.google.rpc.Status.Builder builderForValue)
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • mergeError

        public ModelDeploymentMonitoringJob.Builder mergeError​(com.google.rpc.Status value)
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • clearError

        public ModelDeploymentMonitoringJob.Builder clearError()
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getErrorBuilder

        public com.google.rpc.Status.Builder getErrorBuilder()
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
      • getErrorOrBuilder

        public com.google.rpc.StatusOrBuilder getErrorOrBuilder()
         Output only. Only populated when the job's state is `JOB_STATE_FAILED` or
         `JOB_STATE_CANCELLED`.
         
        .google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];
        Specified by:
        getErrorOrBuilder in interface ModelDeploymentMonitoringJobOrBuilder