Class Model.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
- com.google.cloud.aiplatform.v1beta1.Model.Builder
-
- All Implemented Interfaces:
ModelOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- Model
public static final class Model.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<Model.Builder> implements ModelOrBuilder
A trained machine learning Model.
Protobuf typegoogle.cloud.aiplatform.v1beta1.Model
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description Model.Builder
addAllDeployedModels(Iterable<? extends DeployedModelRef> values)
Output only.Model.Builder
addAllSupportedDeploymentResourcesTypes(Iterable<? extends Model.DeploymentResourcesType> values)
Output only.Model.Builder
addAllSupportedDeploymentResourcesTypesValue(Iterable<Integer> values)
Output only.Model.Builder
addAllSupportedExportFormats(Iterable<? extends Model.ExportFormat> values)
Output only.Model.Builder
addAllSupportedInputStorageFormats(Iterable<String> values)
Output only.Model.Builder
addAllSupportedOutputStorageFormats(Iterable<String> values)
Output only.Model.Builder
addAllVersionAliases(Iterable<String> values)
User provided version aliases so that a model version can be referenced via alias (i.e.Model.Builder
addDeployedModels(int index, DeployedModelRef value)
Output only.Model.Builder
addDeployedModels(int index, DeployedModelRef.Builder builderForValue)
Output only.Model.Builder
addDeployedModels(DeployedModelRef value)
Output only.Model.Builder
addDeployedModels(DeployedModelRef.Builder builderForValue)
Output only.DeployedModelRef.Builder
addDeployedModelsBuilder()
Output only.DeployedModelRef.Builder
addDeployedModelsBuilder(int index)
Output only.Model.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
Model.Builder
addSupportedDeploymentResourcesTypes(Model.DeploymentResourcesType value)
Output only.Model.Builder
addSupportedDeploymentResourcesTypesValue(int value)
Output only.Model.Builder
addSupportedExportFormats(int index, Model.ExportFormat value)
Output only.Model.Builder
addSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)
Output only.Model.Builder
addSupportedExportFormats(Model.ExportFormat value)
Output only.Model.Builder
addSupportedExportFormats(Model.ExportFormat.Builder builderForValue)
Output only.Model.ExportFormat.Builder
addSupportedExportFormatsBuilder()
Output only.Model.ExportFormat.Builder
addSupportedExportFormatsBuilder(int index)
Output only.Model.Builder
addSupportedInputStorageFormats(String value)
Output only.Model.Builder
addSupportedInputStorageFormatsBytes(com.google.protobuf.ByteString value)
Output only.Model.Builder
addSupportedOutputStorageFormats(String value)
Output only.Model.Builder
addSupportedOutputStorageFormatsBytes(com.google.protobuf.ByteString value)
Output only.Model.Builder
addVersionAliases(String value)
User provided version aliases so that a model version can be referenced via alias (i.e.Model.Builder
addVersionAliasesBytes(com.google.protobuf.ByteString value)
User provided version aliases so that a model version can be referenced via alias (i.e.Model
build()
Model
buildPartial()
Model.Builder
clear()
Model.Builder
clearArtifactUri()
Immutable.Model.Builder
clearContainerSpec()
Input only.Model.Builder
clearCreateTime()
Output only.Model.Builder
clearDeployedModels()
Output only.Model.Builder
clearDescription()
The description of the Model.Model.Builder
clearDisplayName()
Required.Model.Builder
clearEncryptionSpec()
Customer-managed encryption key spec for a Model.Model.Builder
clearEtag()
Used to perform consistent read-modify-write updates.Model.Builder
clearExplanationSpec()
The default explanation specification for this Model.Model.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
Model.Builder
clearLabels()
Model.Builder
clearMetadata()
Immutable.Model.Builder
clearMetadataArtifact()
Output only.Model.Builder
clearMetadataSchemaUri()
Immutable.Model.Builder
clearModelSourceInfo()
Output only.Model.Builder
clearName()
The resource name of the Model.Model.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
Model.Builder
clearOriginalModelInfo()
Output only.Model.Builder
clearPredictSchemata()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].Model.Builder
clearSupportedDeploymentResourcesTypes()
Output only.Model.Builder
clearSupportedExportFormats()
Output only.Model.Builder
clearSupportedInputStorageFormats()
Output only.Model.Builder
clearSupportedOutputStorageFormats()
Output only.Model.Builder
clearTrainingPipeline()
Output only.Model.Builder
clearUpdateTime()
Output only.Model.Builder
clearVersionAliases()
User provided version aliases so that a model version can be referenced via alias (i.e.Model.Builder
clearVersionCreateTime()
Output only.Model.Builder
clearVersionDescription()
The description of this version.Model.Builder
clearVersionId()
Output only.Model.Builder
clearVersionUpdateTime()
Output only.Model.Builder
clone()
boolean
containsLabels(String key)
The labels with user-defined metadata to organize your Models.String
getArtifactUri()
Immutable.com.google.protobuf.ByteString
getArtifactUriBytes()
Immutable.ModelContainerSpec
getContainerSpec()
Input only.ModelContainerSpec.Builder
getContainerSpecBuilder()
Input only.ModelContainerSpecOrBuilder
getContainerSpecOrBuilder()
Input only.com.google.protobuf.Timestamp
getCreateTime()
Output only.com.google.protobuf.Timestamp.Builder
getCreateTimeBuilder()
Output only.com.google.protobuf.TimestampOrBuilder
getCreateTimeOrBuilder()
Output only.Model
getDefaultInstanceForType()
DeployedModelRef
getDeployedModels(int index)
Output only.DeployedModelRef.Builder
getDeployedModelsBuilder(int index)
Output only.List<DeployedModelRef.Builder>
getDeployedModelsBuilderList()
Output only.int
getDeployedModelsCount()
Output only.List<DeployedModelRef>
getDeployedModelsList()
Output only.DeployedModelRefOrBuilder
getDeployedModelsOrBuilder(int index)
Output only.List<? extends DeployedModelRefOrBuilder>
getDeployedModelsOrBuilderList()
Output only.String
getDescription()
The description of the Model.com.google.protobuf.ByteString
getDescriptionBytes()
The description of the Model.static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
com.google.protobuf.Descriptors.Descriptor
getDescriptorForType()
String
getDisplayName()
Required.com.google.protobuf.ByteString
getDisplayNameBytes()
Required.EncryptionSpec
getEncryptionSpec()
Customer-managed encryption key spec for a Model.EncryptionSpec.Builder
getEncryptionSpecBuilder()
Customer-managed encryption key spec for a Model.EncryptionSpecOrBuilder
getEncryptionSpecOrBuilder()
Customer-managed encryption key spec for a Model.String
getEtag()
Used to perform consistent read-modify-write updates.com.google.protobuf.ByteString
getEtagBytes()
Used to perform consistent read-modify-write updates.ExplanationSpec
getExplanationSpec()
The default explanation specification for this Model.ExplanationSpec.Builder
getExplanationSpecBuilder()
The default explanation specification for this Model.ExplanationSpecOrBuilder
getExplanationSpecOrBuilder()
The default explanation specification for this Model.Map<String,String>
getLabels()
Deprecated.int
getLabelsCount()
The labels with user-defined metadata to organize your Models.Map<String,String>
getLabelsMap()
The labels with user-defined metadata to organize your Models.String
getLabelsOrDefault(String key, String defaultValue)
The labels with user-defined metadata to organize your Models.String
getLabelsOrThrow(String key)
The labels with user-defined metadata to organize your Models.com.google.protobuf.Value
getMetadata()
Immutable.String
getMetadataArtifact()
Output only.com.google.protobuf.ByteString
getMetadataArtifactBytes()
Output only.com.google.protobuf.Value.Builder
getMetadataBuilder()
Immutable.com.google.protobuf.ValueOrBuilder
getMetadataOrBuilder()
Immutable.String
getMetadataSchemaUri()
Immutable.com.google.protobuf.ByteString
getMetadataSchemaUriBytes()
Immutable.ModelSourceInfo
getModelSourceInfo()
Output only.ModelSourceInfo.Builder
getModelSourceInfoBuilder()
Output only.ModelSourceInfoOrBuilder
getModelSourceInfoOrBuilder()
Output only.Map<String,String>
getMutableLabels()
Deprecated.String
getName()
The resource name of the Model.com.google.protobuf.ByteString
getNameBytes()
The resource name of the Model.Model.OriginalModelInfo
getOriginalModelInfo()
Output only.Model.OriginalModelInfo.Builder
getOriginalModelInfoBuilder()
Output only.Model.OriginalModelInfoOrBuilder
getOriginalModelInfoOrBuilder()
Output only.PredictSchemata
getPredictSchemata()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].PredictSchemata.Builder
getPredictSchemataBuilder()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].PredictSchemataOrBuilder
getPredictSchemataOrBuilder()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].Model.DeploymentResourcesType
getSupportedDeploymentResourcesTypes(int index)
Output only.int
getSupportedDeploymentResourcesTypesCount()
Output only.List<Model.DeploymentResourcesType>
getSupportedDeploymentResourcesTypesList()
Output only.int
getSupportedDeploymentResourcesTypesValue(int index)
Output only.List<Integer>
getSupportedDeploymentResourcesTypesValueList()
Output only.Model.ExportFormat
getSupportedExportFormats(int index)
Output only.Model.ExportFormat.Builder
getSupportedExportFormatsBuilder(int index)
Output only.List<Model.ExportFormat.Builder>
getSupportedExportFormatsBuilderList()
Output only.int
getSupportedExportFormatsCount()
Output only.List<Model.ExportFormat>
getSupportedExportFormatsList()
Output only.Model.ExportFormatOrBuilder
getSupportedExportFormatsOrBuilder(int index)
Output only.List<? extends Model.ExportFormatOrBuilder>
getSupportedExportFormatsOrBuilderList()
Output only.String
getSupportedInputStorageFormats(int index)
Output only.com.google.protobuf.ByteString
getSupportedInputStorageFormatsBytes(int index)
Output only.int
getSupportedInputStorageFormatsCount()
Output only.com.google.protobuf.ProtocolStringList
getSupportedInputStorageFormatsList()
Output only.String
getSupportedOutputStorageFormats(int index)
Output only.com.google.protobuf.ByteString
getSupportedOutputStorageFormatsBytes(int index)
Output only.int
getSupportedOutputStorageFormatsCount()
Output only.com.google.protobuf.ProtocolStringList
getSupportedOutputStorageFormatsList()
Output only.String
getTrainingPipeline()
Output only.com.google.protobuf.ByteString
getTrainingPipelineBytes()
Output only.com.google.protobuf.Timestamp
getUpdateTime()
Output only.com.google.protobuf.Timestamp.Builder
getUpdateTimeBuilder()
Output only.com.google.protobuf.TimestampOrBuilder
getUpdateTimeOrBuilder()
Output only.String
getVersionAliases(int index)
User provided version aliases so that a model version can be referenced via alias (i.e.com.google.protobuf.ByteString
getVersionAliasesBytes(int index)
User provided version aliases so that a model version can be referenced via alias (i.e.int
getVersionAliasesCount()
User provided version aliases so that a model version can be referenced via alias (i.e.com.google.protobuf.ProtocolStringList
getVersionAliasesList()
User provided version aliases so that a model version can be referenced via alias (i.e.com.google.protobuf.Timestamp
getVersionCreateTime()
Output only.com.google.protobuf.Timestamp.Builder
getVersionCreateTimeBuilder()
Output only.com.google.protobuf.TimestampOrBuilder
getVersionCreateTimeOrBuilder()
Output only.String
getVersionDescription()
The description of this version.com.google.protobuf.ByteString
getVersionDescriptionBytes()
The description of this version.String
getVersionId()
Output only.com.google.protobuf.ByteString
getVersionIdBytes()
Output only.com.google.protobuf.Timestamp
getVersionUpdateTime()
Output only.com.google.protobuf.Timestamp.Builder
getVersionUpdateTimeBuilder()
Output only.com.google.protobuf.TimestampOrBuilder
getVersionUpdateTimeOrBuilder()
Output only.boolean
hasContainerSpec()
Input only.boolean
hasCreateTime()
Output only.boolean
hasEncryptionSpec()
Customer-managed encryption key spec for a Model.boolean
hasExplanationSpec()
The default explanation specification for this Model.boolean
hasMetadata()
Immutable.boolean
hasModelSourceInfo()
Output only.boolean
hasOriginalModelInfo()
Output only.boolean
hasPredictSchemata()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].boolean
hasUpdateTime()
Output only.boolean
hasVersionCreateTime()
Output only.boolean
hasVersionUpdateTime()
Output only.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
protected com.google.protobuf.MapField
internalGetMapField(int number)
protected com.google.protobuf.MapField
internalGetMutableMapField(int number)
boolean
isInitialized()
Model.Builder
mergeContainerSpec(ModelContainerSpec value)
Input only.Model.Builder
mergeCreateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
mergeEncryptionSpec(EncryptionSpec value)
Customer-managed encryption key spec for a Model.Model.Builder
mergeExplanationSpec(ExplanationSpec value)
The default explanation specification for this Model.Model.Builder
mergeFrom(Model other)
Model.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Model.Builder
mergeFrom(com.google.protobuf.Message other)
Model.Builder
mergeMetadata(com.google.protobuf.Value value)
Immutable.Model.Builder
mergeModelSourceInfo(ModelSourceInfo value)
Output only.Model.Builder
mergeOriginalModelInfo(Model.OriginalModelInfo value)
Output only.Model.Builder
mergePredictSchemata(PredictSchemata value)
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].Model.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
Model.Builder
mergeUpdateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
mergeVersionCreateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
mergeVersionUpdateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
putAllLabels(Map<String,String> values)
The labels with user-defined metadata to organize your Models.Model.Builder
putLabels(String key, String value)
The labels with user-defined metadata to organize your Models.Model.Builder
removeDeployedModels(int index)
Output only.Model.Builder
removeLabels(String key)
The labels with user-defined metadata to organize your Models.Model.Builder
removeSupportedExportFormats(int index)
Output only.Model.Builder
setArtifactUri(String value)
Immutable.Model.Builder
setArtifactUriBytes(com.google.protobuf.ByteString value)
Immutable.Model.Builder
setContainerSpec(ModelContainerSpec value)
Input only.Model.Builder
setContainerSpec(ModelContainerSpec.Builder builderForValue)
Input only.Model.Builder
setCreateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
setCreateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only.Model.Builder
setDeployedModels(int index, DeployedModelRef value)
Output only.Model.Builder
setDeployedModels(int index, DeployedModelRef.Builder builderForValue)
Output only.Model.Builder
setDescription(String value)
The description of the Model.Model.Builder
setDescriptionBytes(com.google.protobuf.ByteString value)
The description of the Model.Model.Builder
setDisplayName(String value)
Required.Model.Builder
setDisplayNameBytes(com.google.protobuf.ByteString value)
Required.Model.Builder
setEncryptionSpec(EncryptionSpec value)
Customer-managed encryption key spec for a Model.Model.Builder
setEncryptionSpec(EncryptionSpec.Builder builderForValue)
Customer-managed encryption key spec for a Model.Model.Builder
setEtag(String value)
Used to perform consistent read-modify-write updates.Model.Builder
setEtagBytes(com.google.protobuf.ByteString value)
Used to perform consistent read-modify-write updates.Model.Builder
setExplanationSpec(ExplanationSpec value)
The default explanation specification for this Model.Model.Builder
setExplanationSpec(ExplanationSpec.Builder builderForValue)
The default explanation specification for this Model.Model.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
Model.Builder
setMetadata(com.google.protobuf.Value value)
Immutable.Model.Builder
setMetadata(com.google.protobuf.Value.Builder builderForValue)
Immutable.Model.Builder
setMetadataArtifact(String value)
Output only.Model.Builder
setMetadataArtifactBytes(com.google.protobuf.ByteString value)
Output only.Model.Builder
setMetadataSchemaUri(String value)
Immutable.Model.Builder
setMetadataSchemaUriBytes(com.google.protobuf.ByteString value)
Immutable.Model.Builder
setModelSourceInfo(ModelSourceInfo value)
Output only.Model.Builder
setModelSourceInfo(ModelSourceInfo.Builder builderForValue)
Output only.Model.Builder
setName(String value)
The resource name of the Model.Model.Builder
setNameBytes(com.google.protobuf.ByteString value)
The resource name of the Model.Model.Builder
setOriginalModelInfo(Model.OriginalModelInfo value)
Output only.Model.Builder
setOriginalModelInfo(Model.OriginalModelInfo.Builder builderForValue)
Output only.Model.Builder
setPredictSchemata(PredictSchemata value)
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].Model.Builder
setPredictSchemata(PredictSchemata.Builder builderForValue)
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].Model.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
Model.Builder
setSupportedDeploymentResourcesTypes(int index, Model.DeploymentResourcesType value)
Output only.Model.Builder
setSupportedDeploymentResourcesTypesValue(int index, int value)
Output only.Model.Builder
setSupportedExportFormats(int index, Model.ExportFormat value)
Output only.Model.Builder
setSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)
Output only.Model.Builder
setSupportedInputStorageFormats(int index, String value)
Output only.Model.Builder
setSupportedOutputStorageFormats(int index, String value)
Output only.Model.Builder
setTrainingPipeline(String value)
Output only.Model.Builder
setTrainingPipelineBytes(com.google.protobuf.ByteString value)
Output only.Model.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
Model.Builder
setUpdateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
setUpdateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only.Model.Builder
setVersionAliases(int index, String value)
User provided version aliases so that a model version can be referenced via alias (i.e.Model.Builder
setVersionCreateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
setVersionCreateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only.Model.Builder
setVersionDescription(String value)
The description of this version.Model.Builder
setVersionDescriptionBytes(com.google.protobuf.ByteString value)
The description of this version.Model.Builder
setVersionId(String value)
Output only.Model.Builder
setVersionIdBytes(com.google.protobuf.ByteString value)
Output only.Model.Builder
setVersionUpdateTime(com.google.protobuf.Timestamp value)
Output only.Model.Builder
setVersionUpdateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only.-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetMapField
protected com.google.protobuf.MapField internalGetMapField(int number)
- Overrides:
internalGetMapField
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
internalGetMutableMapField
protected com.google.protobuf.MapField internalGetMutableMapField(int number)
- Overrides:
internalGetMutableMapField
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
clear
public Model.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
getDefaultInstanceForType
public Model getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public Model build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public Model buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public Model.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
setField
public Model.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
clearField
public Model.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
clearOneof
public Model.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
setRepeatedField
public Model.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
addRepeatedField
public Model.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
mergeFrom
public Model.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<Model.Builder>
-
mergeFrom
public Model.Builder mergeFrom(Model other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
mergeFrom
public Model.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<Model.Builder>
- Throws:
IOException
-
getName
public String getName()
The resource name of the Model.
string name = 1;
- Specified by:
getName
in interfaceModelOrBuilder
- Returns:
- The name.
-
getNameBytes
public com.google.protobuf.ByteString getNameBytes()
The resource name of the Model.
string name = 1;
- Specified by:
getNameBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for name.
-
setName
public Model.Builder setName(String value)
The resource name of the Model.
string name = 1;
- Parameters:
value
- The name to set.- Returns:
- This builder for chaining.
-
clearName
public Model.Builder clearName()
The resource name of the Model.
string name = 1;
- Returns:
- This builder for chaining.
-
setNameBytes
public Model.Builder setNameBytes(com.google.protobuf.ByteString value)
The resource name of the Model.
string name = 1;
- Parameters:
value
- The bytes for name to set.- Returns:
- This builder for chaining.
-
getVersionId
public String getVersionId()
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getVersionId
in interfaceModelOrBuilder
- Returns:
- The versionId.
-
getVersionIdBytes
public com.google.protobuf.ByteString getVersionIdBytes()
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getVersionIdBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for versionId.
-
setVersionId
public Model.Builder setVersionId(String value)
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The versionId to set.- Returns:
- This builder for chaining.
-
clearVersionId
public Model.Builder clearVersionId()
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- This builder for chaining.
-
setVersionIdBytes
public Model.Builder setVersionIdBytes(com.google.protobuf.ByteString value)
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The bytes for versionId to set.- Returns:
- This builder for chaining.
-
getVersionAliasesList
public com.google.protobuf.ProtocolStringList getVersionAliasesList()
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Specified by:
getVersionAliasesList
in interfaceModelOrBuilder
- Returns:
- A list containing the versionAliases.
-
getVersionAliasesCount
public int getVersionAliasesCount()
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Specified by:
getVersionAliasesCount
in interfaceModelOrBuilder
- Returns:
- The count of versionAliases.
-
getVersionAliases
public String getVersionAliases(int index)
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Specified by:
getVersionAliases
in interfaceModelOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The versionAliases at the given index.
-
getVersionAliasesBytes
public com.google.protobuf.ByteString getVersionAliasesBytes(int index)
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Specified by:
getVersionAliasesBytes
in interfaceModelOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the versionAliases at the given index.
-
setVersionAliases
public Model.Builder setVersionAliases(int index, String value)
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Parameters:
index
- The index to set the value at.value
- The versionAliases to set.- Returns:
- This builder for chaining.
-
addVersionAliases
public Model.Builder addVersionAliases(String value)
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Parameters:
value
- The versionAliases to add.- Returns:
- This builder for chaining.
-
addAllVersionAliases
public Model.Builder addAllVersionAliases(Iterable<String> values)
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Parameters:
values
- The versionAliases to add.- Returns:
- This builder for chaining.
-
clearVersionAliases
public Model.Builder clearVersionAliases()
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Returns:
- This builder for chaining.
-
addVersionAliasesBytes
public Model.Builder addVersionAliasesBytes(com.google.protobuf.ByteString value)
User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
repeated string version_aliases = 29;
- Parameters:
value
- The bytes of the versionAliases to add.- Returns:
- This builder for chaining.
-
hasVersionCreateTime
public boolean hasVersionCreateTime()
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
hasVersionCreateTime
in interfaceModelOrBuilder
- Returns:
- Whether the versionCreateTime field is set.
-
getVersionCreateTime
public com.google.protobuf.Timestamp getVersionCreateTime()
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getVersionCreateTime
in interfaceModelOrBuilder
- Returns:
- The versionCreateTime.
-
setVersionCreateTime
public Model.Builder setVersionCreateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setVersionCreateTime
public Model.Builder setVersionCreateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
mergeVersionCreateTime
public Model.Builder mergeVersionCreateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearVersionCreateTime
public Model.Builder clearVersionCreateTime()
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getVersionCreateTimeBuilder
public com.google.protobuf.Timestamp.Builder getVersionCreateTimeBuilder()
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getVersionCreateTimeOrBuilder
public com.google.protobuf.TimestampOrBuilder getVersionCreateTimeOrBuilder()
Output only. Timestamp when this version was created.
.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getVersionCreateTimeOrBuilder
in interfaceModelOrBuilder
-
hasVersionUpdateTime
public boolean hasVersionUpdateTime()
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
hasVersionUpdateTime
in interfaceModelOrBuilder
- Returns:
- Whether the versionUpdateTime field is set.
-
getVersionUpdateTime
public com.google.protobuf.Timestamp getVersionUpdateTime()
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getVersionUpdateTime
in interfaceModelOrBuilder
- Returns:
- The versionUpdateTime.
-
setVersionUpdateTime
public Model.Builder setVersionUpdateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setVersionUpdateTime
public Model.Builder setVersionUpdateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
mergeVersionUpdateTime
public Model.Builder mergeVersionUpdateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearVersionUpdateTime
public Model.Builder clearVersionUpdateTime()
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getVersionUpdateTimeBuilder
public com.google.protobuf.Timestamp.Builder getVersionUpdateTimeBuilder()
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getVersionUpdateTimeOrBuilder
public com.google.protobuf.TimestampOrBuilder getVersionUpdateTimeOrBuilder()
Output only. Timestamp when this version was most recently updated.
.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getVersionUpdateTimeOrBuilder
in interfaceModelOrBuilder
-
getDisplayName
public String getDisplayName()
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Specified by:
getDisplayName
in interfaceModelOrBuilder
- Returns:
- The displayName.
-
getDisplayNameBytes
public com.google.protobuf.ByteString getDisplayNameBytes()
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Specified by:
getDisplayNameBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for displayName.
-
setDisplayName
public Model.Builder setDisplayName(String value)
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Parameters:
value
- The displayName to set.- Returns:
- This builder for chaining.
-
clearDisplayName
public Model.Builder clearDisplayName()
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- This builder for chaining.
-
setDisplayNameBytes
public Model.Builder setDisplayNameBytes(com.google.protobuf.ByteString value)
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Parameters:
value
- The bytes for displayName to set.- Returns:
- This builder for chaining.
-
getDescription
public String getDescription()
The description of the Model.
string description = 3;
- Specified by:
getDescription
in interfaceModelOrBuilder
- Returns:
- The description.
-
getDescriptionBytes
public com.google.protobuf.ByteString getDescriptionBytes()
The description of the Model.
string description = 3;
- Specified by:
getDescriptionBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for description.
-
setDescription
public Model.Builder setDescription(String value)
The description of the Model.
string description = 3;
- Parameters:
value
- The description to set.- Returns:
- This builder for chaining.
-
clearDescription
public Model.Builder clearDescription()
The description of the Model.
string description = 3;
- Returns:
- This builder for chaining.
-
setDescriptionBytes
public Model.Builder setDescriptionBytes(com.google.protobuf.ByteString value)
The description of the Model.
string description = 3;
- Parameters:
value
- The bytes for description to set.- Returns:
- This builder for chaining.
-
getVersionDescription
public String getVersionDescription()
The description of this version.
string version_description = 30;
- Specified by:
getVersionDescription
in interfaceModelOrBuilder
- Returns:
- The versionDescription.
-
getVersionDescriptionBytes
public com.google.protobuf.ByteString getVersionDescriptionBytes()
The description of this version.
string version_description = 30;
- Specified by:
getVersionDescriptionBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for versionDescription.
-
setVersionDescription
public Model.Builder setVersionDescription(String value)
The description of this version.
string version_description = 30;
- Parameters:
value
- The versionDescription to set.- Returns:
- This builder for chaining.
-
clearVersionDescription
public Model.Builder clearVersionDescription()
The description of this version.
string version_description = 30;
- Returns:
- This builder for chaining.
-
setVersionDescriptionBytes
public Model.Builder setVersionDescriptionBytes(com.google.protobuf.ByteString value)
The description of this version.
string version_description = 30;
- Parameters:
value
- The bytes for versionDescription to set.- Returns:
- This builder for chaining.
-
hasPredictSchemata
public boolean hasPredictSchemata()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
- Specified by:
hasPredictSchemata
in interfaceModelOrBuilder
- Returns:
- Whether the predictSchemata field is set.
-
getPredictSchemata
public PredictSchemata getPredictSchemata()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
- Specified by:
getPredictSchemata
in interfaceModelOrBuilder
- Returns:
- The predictSchemata.
-
setPredictSchemata
public Model.Builder setPredictSchemata(PredictSchemata value)
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
-
setPredictSchemata
public Model.Builder setPredictSchemata(PredictSchemata.Builder builderForValue)
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
-
mergePredictSchemata
public Model.Builder mergePredictSchemata(PredictSchemata value)
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
-
clearPredictSchemata
public Model.Builder clearPredictSchemata()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
-
getPredictSchemataBuilder
public PredictSchemata.Builder getPredictSchemataBuilder()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
-
getPredictSchemataOrBuilder
public PredictSchemataOrBuilder getPredictSchemataOrBuilder()
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
.google.cloud.aiplatform.v1beta1.PredictSchemata predict_schemata = 4;
- Specified by:
getPredictSchemataOrBuilder
in interfaceModelOrBuilder
-
getMetadataSchemaUri
public String getMetadataSchemaUri()
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMetadataSchemaUri
in interfaceModelOrBuilder
- Returns:
- The metadataSchemaUri.
-
getMetadataSchemaUriBytes
public com.google.protobuf.ByteString getMetadataSchemaUriBytes()
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMetadataSchemaUriBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for metadataSchemaUri.
-
setMetadataSchemaUri
public Model.Builder setMetadataSchemaUri(String value)
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];
- Parameters:
value
- The metadataSchemaUri to set.- Returns:
- This builder for chaining.
-
clearMetadataSchemaUri
public Model.Builder clearMetadataSchemaUri()
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];
- Returns:
- This builder for chaining.
-
setMetadataSchemaUriBytes
public Model.Builder setMetadataSchemaUriBytes(com.google.protobuf.ByteString value)
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];
- Parameters:
value
- The bytes for metadataSchemaUri to set.- Returns:
- This builder for chaining.
-
hasMetadata
public boolean hasMetadata()
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
hasMetadata
in interfaceModelOrBuilder
- Returns:
- Whether the metadata field is set.
-
getMetadata
public com.google.protobuf.Value getMetadata()
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMetadata
in interfaceModelOrBuilder
- Returns:
- The metadata.
-
setMetadata
public Model.Builder setMetadata(com.google.protobuf.Value value)
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
-
setMetadata
public Model.Builder setMetadata(com.google.protobuf.Value.Builder builderForValue)
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
-
mergeMetadata
public Model.Builder mergeMetadata(com.google.protobuf.Value value)
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
-
clearMetadata
public Model.Builder clearMetadata()
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
-
getMetadataBuilder
public com.google.protobuf.Value.Builder getMetadataBuilder()
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
-
getMetadataOrBuilder
public com.google.protobuf.ValueOrBuilder getMetadataOrBuilder()
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1beta1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMetadataOrBuilder
in interfaceModelOrBuilder
-
getSupportedExportFormatsList
public List<Model.ExportFormat> getSupportedExportFormatsList()
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedExportFormatsList
in interfaceModelOrBuilder
-
getSupportedExportFormatsCount
public int getSupportedExportFormatsCount()
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedExportFormatsCount
in interfaceModelOrBuilder
-
getSupportedExportFormats
public Model.ExportFormat getSupportedExportFormats(int index)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedExportFormats
in interfaceModelOrBuilder
-
setSupportedExportFormats
public Model.Builder setSupportedExportFormats(int index, Model.ExportFormat value)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setSupportedExportFormats
public Model.Builder setSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addSupportedExportFormats
public Model.Builder addSupportedExportFormats(Model.ExportFormat value)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addSupportedExportFormats
public Model.Builder addSupportedExportFormats(int index, Model.ExportFormat value)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addSupportedExportFormats
public Model.Builder addSupportedExportFormats(Model.ExportFormat.Builder builderForValue)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addSupportedExportFormats
public Model.Builder addSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addAllSupportedExportFormats
public Model.Builder addAllSupportedExportFormats(Iterable<? extends Model.ExportFormat> values)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearSupportedExportFormats
public Model.Builder clearSupportedExportFormats()
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
removeSupportedExportFormats
public Model.Builder removeSupportedExportFormats(int index)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getSupportedExportFormatsBuilder
public Model.ExportFormat.Builder getSupportedExportFormatsBuilder(int index)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getSupportedExportFormatsOrBuilder
public Model.ExportFormatOrBuilder getSupportedExportFormatsOrBuilder(int index)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedExportFormatsOrBuilder
in interfaceModelOrBuilder
-
getSupportedExportFormatsOrBuilderList
public List<? extends Model.ExportFormatOrBuilder> getSupportedExportFormatsOrBuilderList()
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedExportFormatsOrBuilderList
in interfaceModelOrBuilder
-
addSupportedExportFormatsBuilder
public Model.ExportFormat.Builder addSupportedExportFormatsBuilder()
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addSupportedExportFormatsBuilder
public Model.ExportFormat.Builder addSupportedExportFormatsBuilder(int index)
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getSupportedExportFormatsBuilderList
public List<Model.ExportFormat.Builder> getSupportedExportFormatsBuilderList()
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
repeated .google.cloud.aiplatform.v1beta1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getTrainingPipeline
public String getTrainingPipeline()
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }
- Specified by:
getTrainingPipeline
in interfaceModelOrBuilder
- Returns:
- The trainingPipeline.
-
getTrainingPipelineBytes
public com.google.protobuf.ByteString getTrainingPipelineBytes()
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }
- Specified by:
getTrainingPipelineBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for trainingPipeline.
-
setTrainingPipeline
public Model.Builder setTrainingPipeline(String value)
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }
- Parameters:
value
- The trainingPipeline to set.- Returns:
- This builder for chaining.
-
clearTrainingPipeline
public Model.Builder clearTrainingPipeline()
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }
- Returns:
- This builder for chaining.
-
setTrainingPipelineBytes
public Model.Builder setTrainingPipelineBytes(com.google.protobuf.ByteString value)
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }
- Parameters:
value
- The bytes for trainingPipeline to set.- Returns:
- This builder for chaining.
-
hasContainerSpec
public boolean hasContainerSpec()
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
- Specified by:
hasContainerSpec
in interfaceModelOrBuilder
- Returns:
- Whether the containerSpec field is set.
-
getContainerSpec
public ModelContainerSpec getContainerSpec()
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
- Specified by:
getContainerSpec
in interfaceModelOrBuilder
- Returns:
- The containerSpec.
-
setContainerSpec
public Model.Builder setContainerSpec(ModelContainerSpec value)
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
-
setContainerSpec
public Model.Builder setContainerSpec(ModelContainerSpec.Builder builderForValue)
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
-
mergeContainerSpec
public Model.Builder mergeContainerSpec(ModelContainerSpec value)
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
-
clearContainerSpec
public Model.Builder clearContainerSpec()
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
-
getContainerSpecBuilder
public ModelContainerSpec.Builder getContainerSpecBuilder()
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
-
getContainerSpecOrBuilder
public ModelContainerSpecOrBuilder getContainerSpecOrBuilder()
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.
.google.cloud.aiplatform.v1beta1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];
- Specified by:
getContainerSpecOrBuilder
in interfaceModelOrBuilder
-
getArtifactUri
public String getArtifactUri()
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.
string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getArtifactUri
in interfaceModelOrBuilder
- Returns:
- The artifactUri.
-
getArtifactUriBytes
public com.google.protobuf.ByteString getArtifactUriBytes()
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.
string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getArtifactUriBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for artifactUri.
-
setArtifactUri
public Model.Builder setArtifactUri(String value)
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.
string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];
- Parameters:
value
- The artifactUri to set.- Returns:
- This builder for chaining.
-
clearArtifactUri
public Model.Builder clearArtifactUri()
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.
string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];
- Returns:
- This builder for chaining.
-
setArtifactUriBytes
public Model.Builder setArtifactUriBytes(com.google.protobuf.ByteString value)
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.
string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];
- Parameters:
value
- The bytes for artifactUri to set.- Returns:
- This builder for chaining.
-
getSupportedDeploymentResourcesTypesList
public List<Model.DeploymentResourcesType> getSupportedDeploymentResourcesTypesList()
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedDeploymentResourcesTypesList
in interfaceModelOrBuilder
- Returns:
- A list containing the supportedDeploymentResourcesTypes.
-
getSupportedDeploymentResourcesTypesCount
public int getSupportedDeploymentResourcesTypesCount()
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedDeploymentResourcesTypesCount
in interfaceModelOrBuilder
- Returns:
- The count of supportedDeploymentResourcesTypes.
-
getSupportedDeploymentResourcesTypes
public Model.DeploymentResourcesType getSupportedDeploymentResourcesTypes(int index)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedDeploymentResourcesTypes
in interfaceModelOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The supportedDeploymentResourcesTypes at the given index.
-
setSupportedDeploymentResourcesTypes
public Model.Builder setSupportedDeploymentResourcesTypes(int index, Model.DeploymentResourcesType value)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
index
- The index to set the value at.value
- The supportedDeploymentResourcesTypes to set.- Returns:
- This builder for chaining.
-
addSupportedDeploymentResourcesTypes
public Model.Builder addSupportedDeploymentResourcesTypes(Model.DeploymentResourcesType value)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The supportedDeploymentResourcesTypes to add.- Returns:
- This builder for chaining.
-
addAllSupportedDeploymentResourcesTypes
public Model.Builder addAllSupportedDeploymentResourcesTypes(Iterable<? extends Model.DeploymentResourcesType> values)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
values
- The supportedDeploymentResourcesTypes to add.- Returns:
- This builder for chaining.
-
clearSupportedDeploymentResourcesTypes
public Model.Builder clearSupportedDeploymentResourcesTypes()
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- This builder for chaining.
-
getSupportedDeploymentResourcesTypesValueList
public List<Integer> getSupportedDeploymentResourcesTypesValueList()
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedDeploymentResourcesTypesValueList
in interfaceModelOrBuilder
- Returns:
- A list containing the enum numeric values on the wire for supportedDeploymentResourcesTypes.
-
getSupportedDeploymentResourcesTypesValue
public int getSupportedDeploymentResourcesTypesValue(int index)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedDeploymentResourcesTypesValue
in interfaceModelOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The enum numeric value on the wire of supportedDeploymentResourcesTypes at the given index.
-
setSupportedDeploymentResourcesTypesValue
public Model.Builder setSupportedDeploymentResourcesTypesValue(int index, int value)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
index
- The index to set the value at.value
- The enum numeric value on the wire for supportedDeploymentResourcesTypes to set.- Returns:
- This builder for chaining.
-
addSupportedDeploymentResourcesTypesValue
public Model.Builder addSupportedDeploymentResourcesTypesValue(int value)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The enum numeric value on the wire for supportedDeploymentResourcesTypes to add.- Returns:
- This builder for chaining.
-
addAllSupportedDeploymentResourcesTypesValue
public Model.Builder addAllSupportedDeploymentResourcesTypesValue(Iterable<Integer> values)
Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats].
repeated .google.cloud.aiplatform.v1beta1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
values
- The enum numeric values on the wire for supportedDeploymentResourcesTypes to add.- Returns:
- This builder for chaining.
-
getSupportedInputStorageFormatsList
public com.google.protobuf.ProtocolStringList getSupportedInputStorageFormatsList()
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedInputStorageFormatsList
in interfaceModelOrBuilder
- Returns:
- A list containing the supportedInputStorageFormats.
-
getSupportedInputStorageFormatsCount
public int getSupportedInputStorageFormatsCount()
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedInputStorageFormatsCount
in interfaceModelOrBuilder
- Returns:
- The count of supportedInputStorageFormats.
-
getSupportedInputStorageFormats
public String getSupportedInputStorageFormats(int index)
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedInputStorageFormats
in interfaceModelOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The supportedInputStorageFormats at the given index.
-
getSupportedInputStorageFormatsBytes
public com.google.protobuf.ByteString getSupportedInputStorageFormatsBytes(int index)
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedInputStorageFormatsBytes
in interfaceModelOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the supportedInputStorageFormats at the given index.
-
setSupportedInputStorageFormats
public Model.Builder setSupportedInputStorageFormats(int index, String value)
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
index
- The index to set the value at.value
- The supportedInputStorageFormats to set.- Returns:
- This builder for chaining.
-
addSupportedInputStorageFormats
public Model.Builder addSupportedInputStorageFormats(String value)
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The supportedInputStorageFormats to add.- Returns:
- This builder for chaining.
-
addAllSupportedInputStorageFormats
public Model.Builder addAllSupportedInputStorageFormats(Iterable<String> values)
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
values
- The supportedInputStorageFormats to add.- Returns:
- This builder for chaining.
-
clearSupportedInputStorageFormats
public Model.Builder clearSupportedInputStorageFormats()
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- This builder for chaining.
-
addSupportedInputStorageFormatsBytes
public Model.Builder addSupportedInputStorageFormatsBytes(com.google.protobuf.ByteString value)
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.gcs_source]. * `bigquery` Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig.bigquery_source]. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the [InputConfig][google.cloud.aiplatform.v1beta1.BatchPredictionJob.InputConfig] object. If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The bytes of the supportedInputStorageFormats to add.- Returns:
- This builder for chaining.
-
getSupportedOutputStorageFormatsList
public com.google.protobuf.ProtocolStringList getSupportedOutputStorageFormatsList()
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedOutputStorageFormatsList
in interfaceModelOrBuilder
- Returns:
- A list containing the supportedOutputStorageFormats.
-
getSupportedOutputStorageFormatsCount
public int getSupportedOutputStorageFormatsCount()
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedOutputStorageFormatsCount
in interfaceModelOrBuilder
- Returns:
- The count of supportedOutputStorageFormats.
-
getSupportedOutputStorageFormats
public String getSupportedOutputStorageFormats(int index)
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedOutputStorageFormats
in interfaceModelOrBuilder
- Parameters:
index
- The index of the element to return.- Returns:
- The supportedOutputStorageFormats at the given index.
-
getSupportedOutputStorageFormatsBytes
public com.google.protobuf.ByteString getSupportedOutputStorageFormatsBytes(int index)
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getSupportedOutputStorageFormatsBytes
in interfaceModelOrBuilder
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the supportedOutputStorageFormats at the given index.
-
setSupportedOutputStorageFormats
public Model.Builder setSupportedOutputStorageFormats(int index, String value)
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
index
- The index to set the value at.value
- The supportedOutputStorageFormats to set.- Returns:
- This builder for chaining.
-
addSupportedOutputStorageFormats
public Model.Builder addSupportedOutputStorageFormats(String value)
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The supportedOutputStorageFormats to add.- Returns:
- This builder for chaining.
-
addAllSupportedOutputStorageFormats
public Model.Builder addAllSupportedOutputStorageFormats(Iterable<String> values)
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
values
- The supportedOutputStorageFormats to add.- Returns:
- This builder for chaining.
-
clearSupportedOutputStorageFormats
public Model.Builder clearSupportedOutputStorageFormats()
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- This builder for chaining.
-
addSupportedOutputStorageFormatsBytes
public Model.Builder addSupportedOutputStorageFormatsBytes(com.google.protobuf.ByteString value)
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.gcs_destination]. * `bigquery` Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1beta1.BatchPredictionJob.OutputConfig.bigquery_destination] . If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The bytes of the supportedOutputStorageFormats to add.- Returns:
- This builder for chaining.
-
hasCreateTime
public boolean hasCreateTime()
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
hasCreateTime
in interfaceModelOrBuilder
- Returns:
- Whether the createTime field is set.
-
getCreateTime
public com.google.protobuf.Timestamp getCreateTime()
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getCreateTime
in interfaceModelOrBuilder
- Returns:
- The createTime.
-
setCreateTime
public Model.Builder setCreateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setCreateTime
public Model.Builder setCreateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
mergeCreateTime
public Model.Builder mergeCreateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearCreateTime
public Model.Builder clearCreateTime()
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getCreateTimeBuilder
public com.google.protobuf.Timestamp.Builder getCreateTimeBuilder()
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getCreateTimeOrBuilder
public com.google.protobuf.TimestampOrBuilder getCreateTimeOrBuilder()
Output only. Timestamp when this Model was uploaded into Vertex AI.
.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getCreateTimeOrBuilder
in interfaceModelOrBuilder
-
hasUpdateTime
public boolean hasUpdateTime()
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
hasUpdateTime
in interfaceModelOrBuilder
- Returns:
- Whether the updateTime field is set.
-
getUpdateTime
public com.google.protobuf.Timestamp getUpdateTime()
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getUpdateTime
in interfaceModelOrBuilder
- Returns:
- The updateTime.
-
setUpdateTime
public Model.Builder setUpdateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setUpdateTime
public Model.Builder setUpdateTime(com.google.protobuf.Timestamp.Builder builderForValue)
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
mergeUpdateTime
public Model.Builder mergeUpdateTime(com.google.protobuf.Timestamp value)
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearUpdateTime
public Model.Builder clearUpdateTime()
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getUpdateTimeBuilder
public com.google.protobuf.Timestamp.Builder getUpdateTimeBuilder()
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getUpdateTimeOrBuilder
public com.google.protobuf.TimestampOrBuilder getUpdateTimeOrBuilder()
Output only. Timestamp when this Model was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getUpdateTimeOrBuilder
in interfaceModelOrBuilder
-
getDeployedModelsList
public List<DeployedModelRef> getDeployedModelsList()
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getDeployedModelsList
in interfaceModelOrBuilder
-
getDeployedModelsCount
public int getDeployedModelsCount()
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getDeployedModelsCount
in interfaceModelOrBuilder
-
getDeployedModels
public DeployedModelRef getDeployedModels(int index)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getDeployedModels
in interfaceModelOrBuilder
-
setDeployedModels
public Model.Builder setDeployedModels(int index, DeployedModelRef value)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setDeployedModels
public Model.Builder setDeployedModels(int index, DeployedModelRef.Builder builderForValue)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addDeployedModels
public Model.Builder addDeployedModels(DeployedModelRef value)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addDeployedModels
public Model.Builder addDeployedModels(int index, DeployedModelRef value)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addDeployedModels
public Model.Builder addDeployedModels(DeployedModelRef.Builder builderForValue)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addDeployedModels
public Model.Builder addDeployedModels(int index, DeployedModelRef.Builder builderForValue)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addAllDeployedModels
public Model.Builder addAllDeployedModels(Iterable<? extends DeployedModelRef> values)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearDeployedModels
public Model.Builder clearDeployedModels()
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
removeDeployedModels
public Model.Builder removeDeployedModels(int index)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getDeployedModelsBuilder
public DeployedModelRef.Builder getDeployedModelsBuilder(int index)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getDeployedModelsOrBuilder
public DeployedModelRefOrBuilder getDeployedModelsOrBuilder(int index)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getDeployedModelsOrBuilder
in interfaceModelOrBuilder
-
getDeployedModelsOrBuilderList
public List<? extends DeployedModelRefOrBuilder> getDeployedModelsOrBuilderList()
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getDeployedModelsOrBuilderList
in interfaceModelOrBuilder
-
addDeployedModelsBuilder
public DeployedModelRef.Builder addDeployedModelsBuilder()
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
addDeployedModelsBuilder
public DeployedModelRef.Builder addDeployedModelsBuilder(int index)
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getDeployedModelsBuilderList
public List<DeployedModelRef.Builder> getDeployedModelsBuilderList()
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
repeated .google.cloud.aiplatform.v1beta1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasExplanationSpec
public boolean hasExplanationSpec()
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
- Specified by:
hasExplanationSpec
in interfaceModelOrBuilder
- Returns:
- Whether the explanationSpec field is set.
-
getExplanationSpec
public ExplanationSpec getExplanationSpec()
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
- Specified by:
getExplanationSpec
in interfaceModelOrBuilder
- Returns:
- The explanationSpec.
-
setExplanationSpec
public Model.Builder setExplanationSpec(ExplanationSpec value)
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
-
setExplanationSpec
public Model.Builder setExplanationSpec(ExplanationSpec.Builder builderForValue)
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
-
mergeExplanationSpec
public Model.Builder mergeExplanationSpec(ExplanationSpec value)
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
-
clearExplanationSpec
public Model.Builder clearExplanationSpec()
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
-
getExplanationSpecBuilder
public ExplanationSpec.Builder getExplanationSpecBuilder()
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
-
getExplanationSpecOrBuilder
public ExplanationSpecOrBuilder getExplanationSpecOrBuilder()
The default explanation specification for this Model. The Model can be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] if it is populated. All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1beta1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 23;
- Specified by:
getExplanationSpecOrBuilder
in interfaceModelOrBuilder
-
getEtag
public String getEtag()
Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
string etag = 16;
- Specified by:
getEtag
in interfaceModelOrBuilder
- Returns:
- The etag.
-
getEtagBytes
public com.google.protobuf.ByteString getEtagBytes()
Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
string etag = 16;
- Specified by:
getEtagBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for etag.
-
setEtag
public Model.Builder setEtag(String value)
Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
string etag = 16;
- Parameters:
value
- The etag to set.- Returns:
- This builder for chaining.
-
clearEtag
public Model.Builder clearEtag()
Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
string etag = 16;
- Returns:
- This builder for chaining.
-
setEtagBytes
public Model.Builder setEtagBytes(com.google.protobuf.ByteString value)
Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
string etag = 16;
- Parameters:
value
- The bytes for etag to set.- Returns:
- This builder for chaining.
-
getLabelsCount
public int getLabelsCount()
Description copied from interface:ModelOrBuilder
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
- Specified by:
getLabelsCount
in interfaceModelOrBuilder
-
containsLabels
public boolean containsLabels(String key)
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
- Specified by:
containsLabels
in interfaceModelOrBuilder
-
getLabels
@Deprecated public Map<String,String> getLabels()
Deprecated.UsegetLabelsMap()
instead.- Specified by:
getLabels
in interfaceModelOrBuilder
-
getLabelsMap
public Map<String,String> getLabelsMap()
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
- Specified by:
getLabelsMap
in interfaceModelOrBuilder
-
getLabelsOrDefault
public String getLabelsOrDefault(String key, String defaultValue)
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
- Specified by:
getLabelsOrDefault
in interfaceModelOrBuilder
-
getLabelsOrThrow
public String getLabelsOrThrow(String key)
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
- Specified by:
getLabelsOrThrow
in interfaceModelOrBuilder
-
clearLabels
public Model.Builder clearLabels()
-
removeLabels
public Model.Builder removeLabels(String key)
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
-
getMutableLabels
@Deprecated public Map<String,String> getMutableLabels()
Deprecated.Use alternate mutation accessors instead.
-
putLabels
public Model.Builder putLabels(String key, String value)
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
-
putAllLabels
public Model.Builder putAllLabels(Map<String,String> values)
The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 17;
-
hasEncryptionSpec
public boolean hasEncryptionSpec()
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
- Specified by:
hasEncryptionSpec
in interfaceModelOrBuilder
- Returns:
- Whether the encryptionSpec field is set.
-
getEncryptionSpec
public EncryptionSpec getEncryptionSpec()
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
- Specified by:
getEncryptionSpec
in interfaceModelOrBuilder
- Returns:
- The encryptionSpec.
-
setEncryptionSpec
public Model.Builder setEncryptionSpec(EncryptionSpec value)
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
-
setEncryptionSpec
public Model.Builder setEncryptionSpec(EncryptionSpec.Builder builderForValue)
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
-
mergeEncryptionSpec
public Model.Builder mergeEncryptionSpec(EncryptionSpec value)
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
-
clearEncryptionSpec
public Model.Builder clearEncryptionSpec()
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
-
getEncryptionSpecBuilder
public EncryptionSpec.Builder getEncryptionSpecBuilder()
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
-
getEncryptionSpecOrBuilder
public EncryptionSpecOrBuilder getEncryptionSpecOrBuilder()
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 24;
- Specified by:
getEncryptionSpecOrBuilder
in interfaceModelOrBuilder
-
hasModelSourceInfo
public boolean hasModelSourceInfo()
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
hasModelSourceInfo
in interfaceModelOrBuilder
- Returns:
- Whether the modelSourceInfo field is set.
-
getModelSourceInfo
public ModelSourceInfo getModelSourceInfo()
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getModelSourceInfo
in interfaceModelOrBuilder
- Returns:
- The modelSourceInfo.
-
setModelSourceInfo
public Model.Builder setModelSourceInfo(ModelSourceInfo value)
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setModelSourceInfo
public Model.Builder setModelSourceInfo(ModelSourceInfo.Builder builderForValue)
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
mergeModelSourceInfo
public Model.Builder mergeModelSourceInfo(ModelSourceInfo value)
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearModelSourceInfo
public Model.Builder clearModelSourceInfo()
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getModelSourceInfoBuilder
public ModelSourceInfo.Builder getModelSourceInfoBuilder()
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getModelSourceInfoOrBuilder
public ModelSourceInfoOrBuilder getModelSourceInfoOrBuilder()
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.
.google.cloud.aiplatform.v1beta1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getModelSourceInfoOrBuilder
in interfaceModelOrBuilder
-
hasOriginalModelInfo
public boolean hasOriginalModelInfo()
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
hasOriginalModelInfo
in interfaceModelOrBuilder
- Returns:
- Whether the originalModelInfo field is set.
-
getOriginalModelInfo
public Model.OriginalModelInfo getOriginalModelInfo()
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getOriginalModelInfo
in interfaceModelOrBuilder
- Returns:
- The originalModelInfo.
-
setOriginalModelInfo
public Model.Builder setOriginalModelInfo(Model.OriginalModelInfo value)
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
setOriginalModelInfo
public Model.Builder setOriginalModelInfo(Model.OriginalModelInfo.Builder builderForValue)
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
mergeOriginalModelInfo
public Model.Builder mergeOriginalModelInfo(Model.OriginalModelInfo value)
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
clearOriginalModelInfo
public Model.Builder clearOriginalModelInfo()
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getOriginalModelInfoBuilder
public Model.OriginalModelInfo.Builder getOriginalModelInfoBuilder()
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getOriginalModelInfoOrBuilder
public Model.OriginalModelInfoOrBuilder getOriginalModelInfoOrBuilder()
Output only. If this Model is a copy of another Model, this contains info about the original.
.google.cloud.aiplatform.v1beta1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getOriginalModelInfoOrBuilder
in interfaceModelOrBuilder
-
getMetadataArtifact
public String getMetadataArtifact()
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getMetadataArtifact
in interfaceModelOrBuilder
- Returns:
- The metadataArtifact.
-
getMetadataArtifactBytes
public com.google.protobuf.ByteString getMetadataArtifactBytes()
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Specified by:
getMetadataArtifactBytes
in interfaceModelOrBuilder
- Returns:
- The bytes for metadataArtifact.
-
setMetadataArtifact
public Model.Builder setMetadataArtifact(String value)
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The metadataArtifact to set.- Returns:
- This builder for chaining.
-
clearMetadataArtifact
public Model.Builder clearMetadataArtifact()
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- This builder for chaining.
-
setMetadataArtifactBytes
public Model.Builder setMetadataArtifactBytes(com.google.protobuf.ByteString value)
Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Parameters:
value
- The bytes for metadataArtifact to set.- Returns:
- This builder for chaining.
-
setUnknownFields
public final Model.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
mergeUnknownFields
public final Model.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<Model.Builder>
-
-