Class ExplanationMetadata.OutputMetadata.Builder

    • Method Detail

      • getDescriptor

        public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
      • internalGetFieldAccessorTable

        protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
        Specified by:
        internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.OutputMetadata.Builder>
      • getDescriptorForType

        public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
        Specified by:
        getDescriptorForType in interface com.google.protobuf.Message.Builder
        Specified by:
        getDescriptorForType in interface com.google.protobuf.MessageOrBuilder
        Overrides:
        getDescriptorForType in class com.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.OutputMetadata.Builder>
      • getDefaultInstanceForType

        public ExplanationMetadata.OutputMetadata getDefaultInstanceForType()
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
        Specified by:
        getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder
      • build

        public ExplanationMetadata.OutputMetadata build()
        Specified by:
        build in interface com.google.protobuf.Message.Builder
        Specified by:
        build in interface com.google.protobuf.MessageLite.Builder
      • buildPartial

        public ExplanationMetadata.OutputMetadata buildPartial()
        Specified by:
        buildPartial in interface com.google.protobuf.Message.Builder
        Specified by:
        buildPartial in interface com.google.protobuf.MessageLite.Builder
      • isInitialized

        public final boolean isInitialized()
        Specified by:
        isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
        Overrides:
        isInitialized in class com.google.protobuf.GeneratedMessageV3.Builder<ExplanationMetadata.OutputMetadata.Builder>
      • hasIndexDisplayNameMapping

        public boolean hasIndexDisplayNameMapping()
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
        Specified by:
        hasIndexDisplayNameMapping in interface ExplanationMetadata.OutputMetadataOrBuilder
        Returns:
        Whether the indexDisplayNameMapping field is set.
      • getIndexDisplayNameMapping

        public com.google.protobuf.Value getIndexDisplayNameMapping()
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
        Specified by:
        getIndexDisplayNameMapping in interface ExplanationMetadata.OutputMetadataOrBuilder
        Returns:
        The indexDisplayNameMapping.
      • setIndexDisplayNameMapping

        public ExplanationMetadata.OutputMetadata.Builder setIndexDisplayNameMapping​(com.google.protobuf.Value value)
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
      • setIndexDisplayNameMapping

        public ExplanationMetadata.OutputMetadata.Builder setIndexDisplayNameMapping​(com.google.protobuf.Value.Builder builderForValue)
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
      • mergeIndexDisplayNameMapping

        public ExplanationMetadata.OutputMetadata.Builder mergeIndexDisplayNameMapping​(com.google.protobuf.Value value)
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
      • clearIndexDisplayNameMapping

        public ExplanationMetadata.OutputMetadata.Builder clearIndexDisplayNameMapping()
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
      • getIndexDisplayNameMappingBuilder

        public com.google.protobuf.Value.Builder getIndexDisplayNameMappingBuilder()
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
      • getIndexDisplayNameMappingOrBuilder

        public com.google.protobuf.ValueOrBuilder getIndexDisplayNameMappingOrBuilder()
         Static mapping between the index and display name.
        
         Use this if the outputs are a deterministic n-dimensional array, e.g. a
         list of scores of all the classes in a pre-defined order for a
         multi-classification Model. It's not feasible if the outputs are
         non-deterministic, e.g. the Model produces top-k classes or sort the
         outputs by their values.
        
         The shape of the value must be an n-dimensional array of strings. The
         number of dimensions must match that of the outputs to be explained.
         The
         [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]
         is populated by locating in the mapping with
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
         
        .google.protobuf.Value index_display_name_mapping = 1;
        Specified by:
        getIndexDisplayNameMappingOrBuilder in interface ExplanationMetadata.OutputMetadataOrBuilder
      • hasDisplayNameMappingKey

        public boolean hasDisplayNameMappingKey()
         Specify a field name in the prediction to look for the display name.
        
         Use this if the prediction contains the display names for the outputs.
        
         The display names in the prediction must have the same shape of the
         outputs, so that it can be located by
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
         for a specific output.
         
        string display_name_mapping_key = 2;
        Specified by:
        hasDisplayNameMappingKey in interface ExplanationMetadata.OutputMetadataOrBuilder
        Returns:
        Whether the displayNameMappingKey field is set.
      • getDisplayNameMappingKey

        public String getDisplayNameMappingKey()
         Specify a field name in the prediction to look for the display name.
        
         Use this if the prediction contains the display names for the outputs.
        
         The display names in the prediction must have the same shape of the
         outputs, so that it can be located by
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
         for a specific output.
         
        string display_name_mapping_key = 2;
        Specified by:
        getDisplayNameMappingKey in interface ExplanationMetadata.OutputMetadataOrBuilder
        Returns:
        The displayNameMappingKey.
      • getDisplayNameMappingKeyBytes

        public com.google.protobuf.ByteString getDisplayNameMappingKeyBytes()
         Specify a field name in the prediction to look for the display name.
        
         Use this if the prediction contains the display names for the outputs.
        
         The display names in the prediction must have the same shape of the
         outputs, so that it can be located by
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
         for a specific output.
         
        string display_name_mapping_key = 2;
        Specified by:
        getDisplayNameMappingKeyBytes in interface ExplanationMetadata.OutputMetadataOrBuilder
        Returns:
        The bytes for displayNameMappingKey.
      • setDisplayNameMappingKey

        public ExplanationMetadata.OutputMetadata.Builder setDisplayNameMappingKey​(String value)
         Specify a field name in the prediction to look for the display name.
        
         Use this if the prediction contains the display names for the outputs.
        
         The display names in the prediction must have the same shape of the
         outputs, so that it can be located by
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
         for a specific output.
         
        string display_name_mapping_key = 2;
        Parameters:
        value - The displayNameMappingKey to set.
        Returns:
        This builder for chaining.
      • clearDisplayNameMappingKey

        public ExplanationMetadata.OutputMetadata.Builder clearDisplayNameMappingKey()
         Specify a field name in the prediction to look for the display name.
        
         Use this if the prediction contains the display names for the outputs.
        
         The display names in the prediction must have the same shape of the
         outputs, so that it can be located by
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
         for a specific output.
         
        string display_name_mapping_key = 2;
        Returns:
        This builder for chaining.
      • setDisplayNameMappingKeyBytes

        public ExplanationMetadata.OutputMetadata.Builder setDisplayNameMappingKeyBytes​(com.google.protobuf.ByteString value)
         Specify a field name in the prediction to look for the display name.
        
         Use this if the prediction contains the display names for the outputs.
        
         The display names in the prediction must have the same shape of the
         outputs, so that it can be located by
         [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
         for a specific output.
         
        string display_name_mapping_key = 2;
        Parameters:
        value - The bytes for displayNameMappingKey to set.
        Returns:
        This builder for chaining.
      • getOutputTensorNameBytes

        public com.google.protobuf.ByteString getOutputTensorNameBytes()
         Name of the output tensor. Required and is only applicable to Vertex
         AI provided images for Tensorflow.
         
        string output_tensor_name = 3;
        Specified by:
        getOutputTensorNameBytes in interface ExplanationMetadata.OutputMetadataOrBuilder
        Returns:
        The bytes for outputTensorName.
      • setOutputTensorName

        public ExplanationMetadata.OutputMetadata.Builder setOutputTensorName​(String value)
         Name of the output tensor. Required and is only applicable to Vertex
         AI provided images for Tensorflow.
         
        string output_tensor_name = 3;
        Parameters:
        value - The outputTensorName to set.
        Returns:
        This builder for chaining.
      • clearOutputTensorName

        public ExplanationMetadata.OutputMetadata.Builder clearOutputTensorName()
         Name of the output tensor. Required and is only applicable to Vertex
         AI provided images for Tensorflow.
         
        string output_tensor_name = 3;
        Returns:
        This builder for chaining.
      • setOutputTensorNameBytes

        public ExplanationMetadata.OutputMetadata.Builder setOutputTensorNameBytes​(com.google.protobuf.ByteString value)
         Name of the output tensor. Required and is only applicable to Vertex
         AI provided images for Tensorflow.
         
        string output_tensor_name = 3;
        Parameters:
        value - The bytes for outputTensorName to set.
        Returns:
        This builder for chaining.