Package com.google.cloud.aiplatform.v1
Class ExplanationParameters.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
- com.google.cloud.aiplatform.v1.ExplanationParameters.Builder
-
- All Implemented Interfaces:
ExplanationParametersOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- ExplanationParameters
public static final class ExplanationParameters.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder> implements ExplanationParametersOrBuilder
Parameters to configure explaining for Model's predictions.
Protobuf typegoogle.cloud.aiplatform.v1.ExplanationParameters
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description ExplanationParameters.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
ExplanationParameters
build()
ExplanationParameters
buildPartial()
ExplanationParameters.Builder
clear()
ExplanationParameters.Builder
clearExamples()
Example-based explanations that returns the nearest neighbors from the provided dataset.ExplanationParameters.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
ExplanationParameters.Builder
clearIntegratedGradientsAttribution()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
clearMethod()
ExplanationParameters.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
ExplanationParameters.Builder
clearOutputIndices()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.ExplanationParameters.Builder
clearSampledShapleyAttribution()
An attribution method that approximates Shapley values for features that contribute to the label being predicted.ExplanationParameters.Builder
clearTopK()
If populated, returns attributions for top K indices of outputs (defaults to 1).ExplanationParameters.Builder
clearXraiAttribution()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
clone()
ExplanationParameters
getDefaultInstanceForType()
static com.google.protobuf.Descriptors.Descriptor
getDescriptor()
com.google.protobuf.Descriptors.Descriptor
getDescriptorForType()
Examples
getExamples()
Example-based explanations that returns the nearest neighbors from the provided dataset.Examples.Builder
getExamplesBuilder()
Example-based explanations that returns the nearest neighbors from the provided dataset.ExamplesOrBuilder
getExamplesOrBuilder()
Example-based explanations that returns the nearest neighbors from the provided dataset.IntegratedGradientsAttribution
getIntegratedGradientsAttribution()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.IntegratedGradientsAttribution.Builder
getIntegratedGradientsAttributionBuilder()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.IntegratedGradientsAttributionOrBuilder
getIntegratedGradientsAttributionOrBuilder()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.ExplanationParameters.MethodCase
getMethodCase()
com.google.protobuf.ListValue
getOutputIndices()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.com.google.protobuf.ListValue.Builder
getOutputIndicesBuilder()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.com.google.protobuf.ListValueOrBuilder
getOutputIndicesOrBuilder()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.SampledShapleyAttribution
getSampledShapleyAttribution()
An attribution method that approximates Shapley values for features that contribute to the label being predicted.SampledShapleyAttribution.Builder
getSampledShapleyAttributionBuilder()
An attribution method that approximates Shapley values for features that contribute to the label being predicted.SampledShapleyAttributionOrBuilder
getSampledShapleyAttributionOrBuilder()
An attribution method that approximates Shapley values for features that contribute to the label being predicted.int
getTopK()
If populated, returns attributions for top K indices of outputs (defaults to 1).XraiAttribution
getXraiAttribution()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.XraiAttribution.Builder
getXraiAttributionBuilder()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.XraiAttributionOrBuilder
getXraiAttributionOrBuilder()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.boolean
hasExamples()
Example-based explanations that returns the nearest neighbors from the provided dataset.boolean
hasIntegratedGradientsAttribution()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.boolean
hasOutputIndices()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.boolean
hasSampledShapleyAttribution()
An attribution method that approximates Shapley values for features that contribute to the label being predicted.boolean
hasXraiAttribution()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
boolean
isInitialized()
ExplanationParameters.Builder
mergeExamples(Examples value)
Example-based explanations that returns the nearest neighbors from the provided dataset.ExplanationParameters.Builder
mergeFrom(ExplanationParameters other)
ExplanationParameters.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ExplanationParameters.Builder
mergeFrom(com.google.protobuf.Message other)
ExplanationParameters.Builder
mergeIntegratedGradientsAttribution(IntegratedGradientsAttribution value)
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
mergeOutputIndices(com.google.protobuf.ListValue value)
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.ExplanationParameters.Builder
mergeSampledShapleyAttribution(SampledShapleyAttribution value)
An attribution method that approximates Shapley values for features that contribute to the label being predicted.ExplanationParameters.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
ExplanationParameters.Builder
mergeXraiAttribution(XraiAttribution value)
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
setExamples(Examples value)
Example-based explanations that returns the nearest neighbors from the provided dataset.ExplanationParameters.Builder
setExamples(Examples.Builder builderForValue)
Example-based explanations that returns the nearest neighbors from the provided dataset.ExplanationParameters.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
ExplanationParameters.Builder
setIntegratedGradientsAttribution(IntegratedGradientsAttribution value)
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
setIntegratedGradientsAttribution(IntegratedGradientsAttribution.Builder builderForValue)
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
setOutputIndices(com.google.protobuf.ListValue value)
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.ExplanationParameters.Builder
setOutputIndices(com.google.protobuf.ListValue.Builder builderForValue)
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices.ExplanationParameters.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
ExplanationParameters.Builder
setSampledShapleyAttribution(SampledShapleyAttribution value)
An attribution method that approximates Shapley values for features that contribute to the label being predicted.ExplanationParameters.Builder
setSampledShapleyAttribution(SampledShapleyAttribution.Builder builderForValue)
An attribution method that approximates Shapley values for features that contribute to the label being predicted.ExplanationParameters.Builder
setTopK(int value)
If populated, returns attributions for top K indices of outputs (defaults to 1).ExplanationParameters.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
ExplanationParameters.Builder
setXraiAttribution(XraiAttribution value)
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.ExplanationParameters.Builder
setXraiAttribution(XraiAttribution.Builder builderForValue)
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
clear
public ExplanationParameters.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
getDefaultInstanceForType
public ExplanationParameters getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public ExplanationParameters build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public ExplanationParameters buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public ExplanationParameters.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
setField
public ExplanationParameters.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
clearField
public ExplanationParameters.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
clearOneof
public ExplanationParameters.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
setRepeatedField
public ExplanationParameters.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
addRepeatedField
public ExplanationParameters.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
mergeFrom
public ExplanationParameters.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<ExplanationParameters.Builder>
-
mergeFrom
public ExplanationParameters.Builder mergeFrom(ExplanationParameters other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
mergeFrom
public ExplanationParameters.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<ExplanationParameters.Builder>
- Throws:
IOException
-
getMethodCase
public ExplanationParameters.MethodCase getMethodCase()
- Specified by:
getMethodCase
in interfaceExplanationParametersOrBuilder
-
clearMethod
public ExplanationParameters.Builder clearMethod()
-
hasSampledShapleyAttribution
public boolean hasSampledShapleyAttribution()
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
- Specified by:
hasSampledShapleyAttribution
in interfaceExplanationParametersOrBuilder
- Returns:
- Whether the sampledShapleyAttribution field is set.
-
getSampledShapleyAttribution
public SampledShapleyAttribution getSampledShapleyAttribution()
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
- Specified by:
getSampledShapleyAttribution
in interfaceExplanationParametersOrBuilder
- Returns:
- The sampledShapleyAttribution.
-
setSampledShapleyAttribution
public ExplanationParameters.Builder setSampledShapleyAttribution(SampledShapleyAttribution value)
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
-
setSampledShapleyAttribution
public ExplanationParameters.Builder setSampledShapleyAttribution(SampledShapleyAttribution.Builder builderForValue)
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
-
mergeSampledShapleyAttribution
public ExplanationParameters.Builder mergeSampledShapleyAttribution(SampledShapleyAttribution value)
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
-
clearSampledShapleyAttribution
public ExplanationParameters.Builder clearSampledShapleyAttribution()
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
-
getSampledShapleyAttributionBuilder
public SampledShapleyAttribution.Builder getSampledShapleyAttributionBuilder()
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
-
getSampledShapleyAttributionOrBuilder
public SampledShapleyAttributionOrBuilder getSampledShapleyAttributionOrBuilder()
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.aiplatform.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
- Specified by:
getSampledShapleyAttributionOrBuilder
in interfaceExplanationParametersOrBuilder
-
hasIntegratedGradientsAttribution
public boolean hasIntegratedGradientsAttribution()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
- Specified by:
hasIntegratedGradientsAttribution
in interfaceExplanationParametersOrBuilder
- Returns:
- Whether the integratedGradientsAttribution field is set.
-
getIntegratedGradientsAttribution
public IntegratedGradientsAttribution getIntegratedGradientsAttribution()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
- Specified by:
getIntegratedGradientsAttribution
in interfaceExplanationParametersOrBuilder
- Returns:
- The integratedGradientsAttribution.
-
setIntegratedGradientsAttribution
public ExplanationParameters.Builder setIntegratedGradientsAttribution(IntegratedGradientsAttribution value)
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
-
setIntegratedGradientsAttribution
public ExplanationParameters.Builder setIntegratedGradientsAttribution(IntegratedGradientsAttribution.Builder builderForValue)
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
-
mergeIntegratedGradientsAttribution
public ExplanationParameters.Builder mergeIntegratedGradientsAttribution(IntegratedGradientsAttribution value)
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
-
clearIntegratedGradientsAttribution
public ExplanationParameters.Builder clearIntegratedGradientsAttribution()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
-
getIntegratedGradientsAttributionBuilder
public IntegratedGradientsAttribution.Builder getIntegratedGradientsAttributionBuilder()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
-
getIntegratedGradientsAttributionOrBuilder
public IntegratedGradientsAttributionOrBuilder getIntegratedGradientsAttributionOrBuilder()
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.aiplatform.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
- Specified by:
getIntegratedGradientsAttributionOrBuilder
in interfaceExplanationParametersOrBuilder
-
hasXraiAttribution
public boolean hasXraiAttribution()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
- Specified by:
hasXraiAttribution
in interfaceExplanationParametersOrBuilder
- Returns:
- Whether the xraiAttribution field is set.
-
getXraiAttribution
public XraiAttribution getXraiAttribution()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
- Specified by:
getXraiAttribution
in interfaceExplanationParametersOrBuilder
- Returns:
- The xraiAttribution.
-
setXraiAttribution
public ExplanationParameters.Builder setXraiAttribution(XraiAttribution value)
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
-
setXraiAttribution
public ExplanationParameters.Builder setXraiAttribution(XraiAttribution.Builder builderForValue)
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
-
mergeXraiAttribution
public ExplanationParameters.Builder mergeXraiAttribution(XraiAttribution value)
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
-
clearXraiAttribution
public ExplanationParameters.Builder clearXraiAttribution()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
-
getXraiAttributionBuilder
public XraiAttribution.Builder getXraiAttributionBuilder()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
-
getXraiAttributionOrBuilder
public XraiAttributionOrBuilder getXraiAttributionOrBuilder()
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.aiplatform.v1.XraiAttribution xrai_attribution = 3;
- Specified by:
getXraiAttributionOrBuilder
in interfaceExplanationParametersOrBuilder
-
hasExamples
public boolean hasExamples()
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
- Specified by:
hasExamples
in interfaceExplanationParametersOrBuilder
- Returns:
- Whether the examples field is set.
-
getExamples
public Examples getExamples()
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
- Specified by:
getExamples
in interfaceExplanationParametersOrBuilder
- Returns:
- The examples.
-
setExamples
public ExplanationParameters.Builder setExamples(Examples value)
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
-
setExamples
public ExplanationParameters.Builder setExamples(Examples.Builder builderForValue)
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
-
mergeExamples
public ExplanationParameters.Builder mergeExamples(Examples value)
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
-
clearExamples
public ExplanationParameters.Builder clearExamples()
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
-
getExamplesBuilder
public Examples.Builder getExamplesBuilder()
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
-
getExamplesOrBuilder
public ExamplesOrBuilder getExamplesOrBuilder()
Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.aiplatform.v1.Examples examples = 7;
- Specified by:
getExamplesOrBuilder
in interfaceExplanationParametersOrBuilder
-
getTopK
public int getTopK()
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
int32 top_k = 4;
- Specified by:
getTopK
in interfaceExplanationParametersOrBuilder
- Returns:
- The topK.
-
setTopK
public ExplanationParameters.Builder setTopK(int value)
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
int32 top_k = 4;
- Parameters:
value
- The topK to set.- Returns:
- This builder for chaining.
-
clearTopK
public ExplanationParameters.Builder clearTopK()
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
int32 top_k = 4;
- Returns:
- This builder for chaining.
-
hasOutputIndices
public boolean hasOutputIndices()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
- Specified by:
hasOutputIndices
in interfaceExplanationParametersOrBuilder
- Returns:
- Whether the outputIndices field is set.
-
getOutputIndices
public com.google.protobuf.ListValue getOutputIndices()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
- Specified by:
getOutputIndices
in interfaceExplanationParametersOrBuilder
- Returns:
- The outputIndices.
-
setOutputIndices
public ExplanationParameters.Builder setOutputIndices(com.google.protobuf.ListValue value)
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
-
setOutputIndices
public ExplanationParameters.Builder setOutputIndices(com.google.protobuf.ListValue.Builder builderForValue)
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
-
mergeOutputIndices
public ExplanationParameters.Builder mergeOutputIndices(com.google.protobuf.ListValue value)
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
-
clearOutputIndices
public ExplanationParameters.Builder clearOutputIndices()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
-
getOutputIndicesBuilder
public com.google.protobuf.ListValue.Builder getOutputIndicesBuilder()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
-
getOutputIndicesOrBuilder
public com.google.protobuf.ListValueOrBuilder getOutputIndicesOrBuilder()
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
- Specified by:
getOutputIndicesOrBuilder
in interfaceExplanationParametersOrBuilder
-
setUnknownFields
public final ExplanationParameters.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
mergeUnknownFields
public final ExplanationParameters.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<ExplanationParameters.Builder>
-
-