Package com.google.cloud.aiplatform.v1
Class DedicatedResources.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
- com.google.cloud.aiplatform.v1.DedicatedResources.Builder
-
- All Implemented Interfaces:
DedicatedResourcesOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- DedicatedResources
public static final class DedicatedResources.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder> implements DedicatedResourcesOrBuilder
A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.
Protobuf typegoogle.cloud.aiplatform.v1.DedicatedResources
-
-
Method Summary
-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
clear
public DedicatedResources.Builder clear()
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
getDefaultInstanceForType
public DedicatedResources getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
public DedicatedResources build()
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public DedicatedResources buildPartial()
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
public DedicatedResources.Builder clone()
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
setField
public DedicatedResources.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
clearField
public DedicatedResources.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
clearOneof
public DedicatedResources.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
setRepeatedField
public DedicatedResources.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
addRepeatedField
public DedicatedResources.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
mergeFrom
public DedicatedResources.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<DedicatedResources.Builder>
-
mergeFrom
public DedicatedResources.Builder mergeFrom(DedicatedResources other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
mergeFrom
public DedicatedResources.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<DedicatedResources.Builder>
- Throws:
IOException
-
hasMachineSpec
public boolean hasMachineSpec()
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
- Specified by:
hasMachineSpec
in interfaceDedicatedResourcesOrBuilder
- Returns:
- Whether the machineSpec field is set.
-
getMachineSpec
public MachineSpec getMachineSpec()
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMachineSpec
in interfaceDedicatedResourcesOrBuilder
- Returns:
- The machineSpec.
-
setMachineSpec
public DedicatedResources.Builder setMachineSpec(MachineSpec value)
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
-
setMachineSpec
public DedicatedResources.Builder setMachineSpec(MachineSpec.Builder builderForValue)
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
-
mergeMachineSpec
public DedicatedResources.Builder mergeMachineSpec(MachineSpec value)
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
-
clearMachineSpec
public DedicatedResources.Builder clearMachineSpec()
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
-
getMachineSpecBuilder
public MachineSpec.Builder getMachineSpecBuilder()
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
-
getMachineSpecOrBuilder
public MachineSpecOrBuilder getMachineSpecOrBuilder()
Required. Immutable. The specification of a single machine used by the prediction.
.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMachineSpecOrBuilder
in interfaceDedicatedResourcesOrBuilder
-
getMinReplicaCount
public int getMinReplicaCount()
Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1. If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMinReplicaCount
in interfaceDedicatedResourcesOrBuilder
- Returns:
- The minReplicaCount.
-
setMinReplicaCount
public DedicatedResources.Builder setMinReplicaCount(int value)
Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1. If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
- Parameters:
value
- The minReplicaCount to set.- Returns:
- This builder for chaining.
-
clearMinReplicaCount
public DedicatedResources.Builder clearMinReplicaCount()
Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1. If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
- Returns:
- This builder for chaining.
-
getMaxReplicaCount
public int getMaxReplicaCount()
Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use [min_replica_count][google.cloud.aiplatform.v1.DedicatedResources.min_replica_count] as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getMaxReplicaCount
in interfaceDedicatedResourcesOrBuilder
- Returns:
- The maxReplicaCount.
-
setMaxReplicaCount
public DedicatedResources.Builder setMaxReplicaCount(int value)
Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use [min_replica_count][google.cloud.aiplatform.v1.DedicatedResources.min_replica_count] as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];
- Parameters:
value
- The maxReplicaCount to set.- Returns:
- This builder for chaining.
-
clearMaxReplicaCount
public DedicatedResources.Builder clearMaxReplicaCount()
Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use [min_replica_count][google.cloud.aiplatform.v1.DedicatedResources.min_replica_count] as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];
- Returns:
- This builder for chaining.
-
getAutoscalingMetricSpecsList
public List<AutoscalingMetricSpec> getAutoscalingMetricSpecsList()
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getAutoscalingMetricSpecsList
in interfaceDedicatedResourcesOrBuilder
-
getAutoscalingMetricSpecsCount
public int getAutoscalingMetricSpecsCount()
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getAutoscalingMetricSpecsCount
in interfaceDedicatedResourcesOrBuilder
-
getAutoscalingMetricSpecs
public AutoscalingMetricSpec getAutoscalingMetricSpecs(int index)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getAutoscalingMetricSpecs
in interfaceDedicatedResourcesOrBuilder
-
setAutoscalingMetricSpecs
public DedicatedResources.Builder setAutoscalingMetricSpecs(int index, AutoscalingMetricSpec value)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
setAutoscalingMetricSpecs
public DedicatedResources.Builder setAutoscalingMetricSpecs(int index, AutoscalingMetricSpec.Builder builderForValue)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
addAutoscalingMetricSpecs
public DedicatedResources.Builder addAutoscalingMetricSpecs(AutoscalingMetricSpec value)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
addAutoscalingMetricSpecs
public DedicatedResources.Builder addAutoscalingMetricSpecs(int index, AutoscalingMetricSpec value)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
addAutoscalingMetricSpecs
public DedicatedResources.Builder addAutoscalingMetricSpecs(AutoscalingMetricSpec.Builder builderForValue)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
addAutoscalingMetricSpecs
public DedicatedResources.Builder addAutoscalingMetricSpecs(int index, AutoscalingMetricSpec.Builder builderForValue)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
addAllAutoscalingMetricSpecs
public DedicatedResources.Builder addAllAutoscalingMetricSpecs(Iterable<? extends AutoscalingMetricSpec> values)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
clearAutoscalingMetricSpecs
public DedicatedResources.Builder clearAutoscalingMetricSpecs()
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
removeAutoscalingMetricSpecs
public DedicatedResources.Builder removeAutoscalingMetricSpecs(int index)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
getAutoscalingMetricSpecsBuilder
public AutoscalingMetricSpec.Builder getAutoscalingMetricSpecsBuilder(int index)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
getAutoscalingMetricSpecsOrBuilder
public AutoscalingMetricSpecOrBuilder getAutoscalingMetricSpecsOrBuilder(int index)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getAutoscalingMetricSpecsOrBuilder
in interfaceDedicatedResourcesOrBuilder
-
getAutoscalingMetricSpecsOrBuilderList
public List<? extends AutoscalingMetricSpecOrBuilder> getAutoscalingMetricSpecsOrBuilderList()
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
- Specified by:
getAutoscalingMetricSpecsOrBuilderList
in interfaceDedicatedResourcesOrBuilder
-
addAutoscalingMetricSpecsBuilder
public AutoscalingMetricSpec.Builder addAutoscalingMetricSpecsBuilder()
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
addAutoscalingMetricSpecsBuilder
public AutoscalingMetricSpec.Builder addAutoscalingMetricSpecsBuilder(int index)
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
getAutoscalingMetricSpecsBuilderList
public List<AutoscalingMetricSpec.Builder> getAutoscalingMetricSpecsBuilderList()
Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If [machine_spec.accelerator_count][google.cloud.aiplatform.v1.MachineSpec.accelerator_count] is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set [autoscaling_metric_specs.metric_name][google.cloud.aiplatform.v1.AutoscalingMetricSpec.metric_name] to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and [autoscaling_metric_specs.target][google.cloud.aiplatform.v1.AutoscalingMetricSpec.target] to `80`.
repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
-
setUnknownFields
public final DedicatedResources.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
mergeUnknownFields
public final DedicatedResources.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<DedicatedResources.Builder>
-
-