Package com.google.cloud.notebooks.v1
Interface ExecutionTemplateOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ExecutionTemplate
,ExecutionTemplate.Builder
public interface ExecutionTemplateOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Deprecated Methods Modifier and Type Method Description boolean
containsLabels(String key)
Labels for execution.ExecutionTemplate.SchedulerAcceleratorConfig
getAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.ExecutionTemplate.SchedulerAcceleratorConfigOrBuilder
getAcceleratorConfigOrBuilder()
Configuration (count and accelerator type) for hardware running notebook execution.String
getContainerImageUri()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-containercom.google.protobuf.ByteString
getContainerImageUriBytes()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-containerExecutionTemplate.DataprocParameters
getDataprocParameters()
Parameters used in Dataproc JobType executions.ExecutionTemplate.DataprocParametersOrBuilder
getDataprocParametersOrBuilder()
Parameters used in Dataproc JobType executions.String
getInputNotebookFile()
Path to the notebook file to execute.com.google.protobuf.ByteString
getInputNotebookFileBytes()
Path to the notebook file to execute.ExecutionTemplate.JobParametersCase
getJobParametersCase()
ExecutionTemplate.JobType
getJobType()
The type of Job to be used on this execution.int
getJobTypeValue()
The type of Job to be used on this execution.String
getKernelSpec()
Name of the kernel spec to use.com.google.protobuf.ByteString
getKernelSpecBytes()
Name of the kernel spec to use.Map<String,String>
getLabels()
Deprecated.int
getLabelsCount()
Labels for execution.Map<String,String>
getLabelsMap()
Labels for execution.String
getLabelsOrDefault(String key, String defaultValue)
Labels for execution.String
getLabelsOrThrow(String key)
Labels for execution.String
getMasterType()
Specifies the type of virtual machine to use for your training job's master worker.com.google.protobuf.ByteString
getMasterTypeBytes()
Specifies the type of virtual machine to use for your training job's master worker.String
getOutputNotebookFolder()
Path to the notebook folder to write to.com.google.protobuf.ByteString
getOutputNotebookFolderBytes()
Path to the notebook folder to write to.String
getParameters()
Parameters used within the 'input_notebook_file' notebook.com.google.protobuf.ByteString
getParametersBytes()
Parameters used within the 'input_notebook_file' notebook.String
getParamsYamlFile()
Parameters to be overridden in the notebook during execution.com.google.protobuf.ByteString
getParamsYamlFileBytes()
Parameters to be overridden in the notebook during execution.ExecutionTemplate.ScaleTier
getScaleTier()
Deprecated.google.cloud.notebooks.v1.ExecutionTemplate.scale_tier is deprecated.int
getScaleTierValue()
Deprecated.google.cloud.notebooks.v1.ExecutionTemplate.scale_tier is deprecated.String
getServiceAccount()
The email address of a service account to use when running the execution.com.google.protobuf.ByteString
getServiceAccountBytes()
The email address of a service account to use when running the execution.String
getTensorboard()
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs.com.google.protobuf.ByteString
getTensorboardBytes()
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs.ExecutionTemplate.VertexAIParameters
getVertexAiParameters()
Parameters used in Vertex AI JobType executions.ExecutionTemplate.VertexAIParametersOrBuilder
getVertexAiParametersOrBuilder()
Parameters used in Vertex AI JobType executions.boolean
hasAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.boolean
hasDataprocParameters()
Parameters used in Dataproc JobType executions.boolean
hasVertexAiParameters()
Parameters used in Vertex AI JobType executions.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getScaleTierValue
@Deprecated int getScaleTierValue()
Deprecated.google.cloud.notebooks.v1.ExecutionTemplate.scale_tier is deprecated. See google/cloud/notebooks/v1/execution.proto;l=151Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
.google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier scale_tier = 1 [deprecated = true, (.google.api.field_behavior) = REQUIRED];
- Returns:
- The enum numeric value on the wire for scaleTier.
-
getScaleTier
@Deprecated ExecutionTemplate.ScaleTier getScaleTier()
Deprecated.google.cloud.notebooks.v1.ExecutionTemplate.scale_tier is deprecated. See google/cloud/notebooks/v1/execution.proto;l=151Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
.google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier scale_tier = 1 [deprecated = true, (.google.api.field_behavior) = REQUIRED];
- Returns:
- The scaleTier.
-
getMasterType
String getMasterType()
Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU](https://cloud.google.com/ai-platform/training/docs/using-tpus#configuring_a_custom_tpu_machine).
string master_type = 2;
- Returns:
- The masterType.
-
getMasterTypeBytes
com.google.protobuf.ByteString getMasterTypeBytes()
Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU](https://cloud.google.com/ai-platform/training/docs/using-tpus#configuring_a_custom_tpu_machine).
string master_type = 2;
- Returns:
- The bytes for masterType.
-
hasAcceleratorConfig
boolean hasAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
- Returns:
- Whether the acceleratorConfig field is set.
-
getAcceleratorConfig
ExecutionTemplate.SchedulerAcceleratorConfig getAcceleratorConfig()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
- Returns:
- The acceleratorConfig.
-
getAcceleratorConfigOrBuilder
ExecutionTemplate.SchedulerAcceleratorConfigOrBuilder getAcceleratorConfigOrBuilder()
Configuration (count and accelerator type) for hardware running notebook execution.
.google.cloud.notebooks.v1.ExecutionTemplate.SchedulerAcceleratorConfig accelerator_config = 3;
-
getLabelsCount
int getLabelsCount()
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
-
containsLabels
boolean containsLabels(String key)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
-
getLabels
@Deprecated Map<String,String> getLabels()
Deprecated.UsegetLabelsMap()
instead.
-
getLabelsMap
Map<String,String> getLabelsMap()
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
-
getLabelsOrDefault
String getLabelsOrDefault(String key, String defaultValue)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
-
getLabelsOrThrow
String getLabelsOrThrow(String key)
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
map<string, string> labels = 4;
-
getInputNotebookFile
String getInputNotebookFile()
Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: `gs://{bucket_name}/{folder}/{notebook_file_name}` Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb`
string input_notebook_file = 5;
- Returns:
- The inputNotebookFile.
-
getInputNotebookFileBytes
com.google.protobuf.ByteString getInputNotebookFileBytes()
Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: `gs://{bucket_name}/{folder}/{notebook_file_name}` Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb`
string input_notebook_file = 5;
- Returns:
- The bytes for inputNotebookFile.
-
getContainerImageUri
String getContainerImageUri()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
- Returns:
- The containerImageUri.
-
getContainerImageUriBytes
com.google.protobuf.ByteString getContainerImageUriBytes()
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
- Returns:
- The bytes for containerImageUri.
-
getOutputNotebookFolder
String getOutputNotebookFolder()
Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: `gs://{bucket_name}/{folder}` Ex: `gs://notebook_user/scheduled_notebooks`
string output_notebook_folder = 7;
- Returns:
- The outputNotebookFolder.
-
getOutputNotebookFolderBytes
com.google.protobuf.ByteString getOutputNotebookFolderBytes()
Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: `gs://{bucket_name}/{folder}` Ex: `gs://notebook_user/scheduled_notebooks`
string output_notebook_folder = 7;
- Returns:
- The bytes for outputNotebookFolder.
-
getParamsYamlFile
String getParamsYamlFile()
Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml`
string params_yaml_file = 8;
- Returns:
- The paramsYamlFile.
-
getParamsYamlFileBytes
com.google.protobuf.ByteString getParamsYamlFileBytes()
Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml`
string params_yaml_file = 8;
- Returns:
- The bytes for paramsYamlFile.
-
getParameters
String getParameters()
Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
- Returns:
- The parameters.
-
getParametersBytes
com.google.protobuf.ByteString getParametersBytes()
Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
- Returns:
- The bytes for parameters.
-
getServiceAccount
String getServiceAccount()
The email address of a service account to use when running the execution. You must have the `iam.serviceAccounts.actAs` permission for the specified service account.
string service_account = 10;
- Returns:
- The serviceAccount.
-
getServiceAccountBytes
com.google.protobuf.ByteString getServiceAccountBytes()
The email address of a service account to use when running the execution. You must have the `iam.serviceAccounts.actAs` permission for the specified service account.
string service_account = 10;
- Returns:
- The bytes for serviceAccount.
-
getJobTypeValue
int getJobTypeValue()
The type of Job to be used on this execution.
.google.cloud.notebooks.v1.ExecutionTemplate.JobType job_type = 11;
- Returns:
- The enum numeric value on the wire for jobType.
-
getJobType
ExecutionTemplate.JobType getJobType()
The type of Job to be used on this execution.
.google.cloud.notebooks.v1.ExecutionTemplate.JobType job_type = 11;
- Returns:
- The jobType.
-
hasDataprocParameters
boolean hasDataprocParameters()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
- Returns:
- Whether the dataprocParameters field is set.
-
getDataprocParameters
ExecutionTemplate.DataprocParameters getDataprocParameters()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
- Returns:
- The dataprocParameters.
-
getDataprocParametersOrBuilder
ExecutionTemplate.DataprocParametersOrBuilder getDataprocParametersOrBuilder()
Parameters used in Dataproc JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.DataprocParameters dataproc_parameters = 12;
-
hasVertexAiParameters
boolean hasVertexAiParameters()
Parameters used in Vertex AI JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.VertexAIParameters vertex_ai_parameters = 13;
- Returns:
- Whether the vertexAiParameters field is set.
-
getVertexAiParameters
ExecutionTemplate.VertexAIParameters getVertexAiParameters()
Parameters used in Vertex AI JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.VertexAIParameters vertex_ai_parameters = 13;
- Returns:
- The vertexAiParameters.
-
getVertexAiParametersOrBuilder
ExecutionTemplate.VertexAIParametersOrBuilder getVertexAiParametersOrBuilder()
Parameters used in Vertex AI JobType executions.
.google.cloud.notebooks.v1.ExecutionTemplate.VertexAIParameters vertex_ai_parameters = 13;
-
getKernelSpec
String getKernelSpec()
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
string kernel_spec = 14;
- Returns:
- The kernelSpec.
-
getKernelSpecBytes
com.google.protobuf.ByteString getKernelSpecBytes()
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
string kernel_spec = 14;
- Returns:
- The bytes for kernelSpec.
-
getTensorboard
String getTensorboard()
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs. Format: `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
string tensorboard = 15 [(.google.api.resource_reference) = { ... }
- Returns:
- The tensorboard.
-
getTensorboardBytes
com.google.protobuf.ByteString getTensorboardBytes()
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs. Format: `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
string tensorboard = 15 [(.google.api.resource_reference) = { ... }
- Returns:
- The bytes for tensorboard.
-
getJobParametersCase
ExecutionTemplate.JobParametersCase getJobParametersCase()
-
-