NluSettings.Builder |
NluSettings.Builder.addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field,
Object value) |
|
NluSettings.Builder |
NluSettings.Builder.clear() |
|
NluSettings.Builder |
NluSettings.Builder.clearClassificationThreshold() |
To filter out false positive results and still get variety in matched
natural language inputs for your agent, you can tune the machine learning
classification threshold.
|
NluSettings.Builder |
NluSettings.Builder.clearField(com.google.protobuf.Descriptors.FieldDescriptor field) |
|
NluSettings.Builder |
NluSettings.Builder.clearModelTrainingMode() |
Indicates NLU model training mode.
|
NluSettings.Builder |
NluSettings.Builder.clearModelType() |
Indicates the type of NLU model.
|
NluSettings.Builder |
NluSettings.Builder.clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) |
|
NluSettings.Builder |
NluSettings.Builder.clone() |
|
NluSettings.Builder |
Flow.Builder.getNluSettingsBuilder() |
NLU related settings of the flow.
|
NluSettings.Builder |
Version.Builder.getNluSettingsBuilder() |
Output only.
|
NluSettings.Builder |
NluSettings.Builder.mergeFrom(NluSettings other) |
|
NluSettings.Builder |
NluSettings.Builder.mergeFrom(com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
|
NluSettings.Builder |
NluSettings.Builder.mergeFrom(com.google.protobuf.Message other) |
|
NluSettings.Builder |
NluSettings.Builder.mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields) |
|
static NluSettings.Builder |
NluSettings.newBuilder() |
|
static NluSettings.Builder |
NluSettings.newBuilder(NluSettings prototype) |
|
NluSettings.Builder |
NluSettings.newBuilderForType() |
|
protected NluSettings.Builder |
NluSettings.newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) |
|
NluSettings.Builder |
NluSettings.Builder.setClassificationThreshold(float value) |
To filter out false positive results and still get variety in matched
natural language inputs for your agent, you can tune the machine learning
classification threshold.
|
NluSettings.Builder |
NluSettings.Builder.setField(com.google.protobuf.Descriptors.FieldDescriptor field,
Object value) |
|
NluSettings.Builder |
NluSettings.Builder.setModelTrainingMode(NluSettings.ModelTrainingMode value) |
Indicates NLU model training mode.
|
NluSettings.Builder |
NluSettings.Builder.setModelTrainingModeValue(int value) |
Indicates NLU model training mode.
|
NluSettings.Builder |
NluSettings.Builder.setModelType(NluSettings.ModelType value) |
Indicates the type of NLU model.
|
NluSettings.Builder |
NluSettings.Builder.setModelTypeValue(int value) |
Indicates the type of NLU model.
|
NluSettings.Builder |
NluSettings.Builder.setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field,
int index,
Object value) |
|
NluSettings.Builder |
NluSettings.Builder.setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields) |
|
NluSettings.Builder |
NluSettings.toBuilder() |
|