Interface PrCurve.ConfidenceMetricsEntryOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
PrCurve.ConfidenceMetricsEntry
,PrCurve.ConfidenceMetricsEntry.Builder
- Enclosing class:
- PrCurve
public static interface PrCurve.ConfidenceMetricsEntryOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description float
getConfidenceThreshold()
Threshold used for this entry.float
getF1Score()
Harmonic mean of recall and precision.float
getF1ScoreAt1()
The harmonic mean of [recall_at1][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.precision_at1].float
getF1ScoreAt5()
The harmonic mean of [recall_at5][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.recall_at5] and [precision_at5][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.precision_at5].float
getPrecision()
Precision value.float
getPrecisionAt1()
Precision value for entries with label that has highest score.float
getPrecisionAt5()
Precision value for entries with label that has highest 5 scores.float
getRecall()
Recall value.float
getRecallAt1()
Recall value for entries with label that has highest score.float
getRecallAt5()
Recall value for entries with label that has highest 5 scores.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getConfidenceThreshold
float getConfidenceThreshold()
Threshold used for this entry. For classification tasks, this is a classification threshold: a predicted label is categorized as positive or negative (in the context of this point on the PR curve) based on whether the label's score meets this threshold. For image object detection (bounding box) tasks, this is the [intersection-over-union (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union) threshold for the context of this point on the PR curve.
float confidence_threshold = 1;
- Returns:
- The confidenceThreshold.
-
getRecall
float getRecall()
Recall value.
float recall = 2;
- Returns:
- The recall.
-
getPrecision
float getPrecision()
Precision value.
float precision = 3;
- Returns:
- The precision.
-
getF1Score
float getF1Score()
Harmonic mean of recall and precision.
float f1_score = 4;
- Returns:
- The f1Score.
-
getRecallAt1
float getRecallAt1()
Recall value for entries with label that has highest score.
float recall_at1 = 5;
- Returns:
- The recallAt1.
-
getPrecisionAt1
float getPrecisionAt1()
Precision value for entries with label that has highest score.
float precision_at1 = 6;
- Returns:
- The precisionAt1.
-
getF1ScoreAt1
float getF1ScoreAt1()
The harmonic mean of [recall_at1][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.precision_at1].
float f1_score_at1 = 7;
- Returns:
- The f1ScoreAt1.
-
getRecallAt5
float getRecallAt5()
Recall value for entries with label that has highest 5 scores.
float recall_at5 = 8;
- Returns:
- The recallAt5.
-
getPrecisionAt5
float getPrecisionAt5()
Precision value for entries with label that has highest 5 scores.
float precision_at5 = 9;
- Returns:
- The precisionAt5.
-
getF1ScoreAt5
float getF1ScoreAt5()
The harmonic mean of [recall_at5][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.recall_at5] and [precision_at5][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.precision_at5].
float f1_score_at5 = 10;
- Returns:
- The f1ScoreAt5.
-
-