Package com.google.cloud.automl.v1beta1
Interface TablesAnnotationOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
TablesAnnotation
,TablesAnnotation.Builder
public interface TablesAnnotationOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description float
getBaselineScore()
Output only.DoubleRange
getPredictionInterval()
Output only.DoubleRangeOrBuilder
getPredictionIntervalOrBuilder()
Output only.float
getScore()
Output only.TablesModelColumnInfo
getTablesModelColumnInfo(int index)
Output only.int
getTablesModelColumnInfoCount()
Output only.List<TablesModelColumnInfo>
getTablesModelColumnInfoList()
Output only.TablesModelColumnInfoOrBuilder
getTablesModelColumnInfoOrBuilder(int index)
Output only.List<? extends TablesModelColumnInfoOrBuilder>
getTablesModelColumnInfoOrBuilderList()
Output only.com.google.protobuf.Value
getValue()
The predicted value of the row's [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].com.google.protobuf.ValueOrBuilder
getValueOrBuilder()
The predicted value of the row's [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].boolean
hasPredictionInterval()
Output only.boolean
hasValue()
The predicted value of the row's [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getScore
float getScore()
Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher value means greater confidence in the returned value. For [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] of FLOAT64 data type the score is not populated.
float score = 1;
- Returns:
- The score.
-
hasPredictionInterval
boolean hasPredictionInterval()
Output only. Only populated when [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] has FLOAT64 data type. An interval in which the exactly correct target value has 95% chance to be in.
.google.cloud.automl.v1beta1.DoubleRange prediction_interval = 4;
- Returns:
- Whether the predictionInterval field is set.
-
getPredictionInterval
DoubleRange getPredictionInterval()
Output only. Only populated when [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] has FLOAT64 data type. An interval in which the exactly correct target value has 95% chance to be in.
.google.cloud.automl.v1beta1.DoubleRange prediction_interval = 4;
- Returns:
- The predictionInterval.
-
getPredictionIntervalOrBuilder
DoubleRangeOrBuilder getPredictionIntervalOrBuilder()
Output only. Only populated when [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] has FLOAT64 data type. An interval in which the exactly correct target value has 95% chance to be in.
.google.cloud.automl.v1beta1.DoubleRange prediction_interval = 4;
-
hasValue
boolean hasValue()
The predicted value of the row's [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]. The value depends on the column's DataType: * CATEGORY - the predicted (with the above confidence `score`) CATEGORY value. * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
.google.protobuf.Value value = 2;
- Returns:
- Whether the value field is set.
-
getValue
com.google.protobuf.Value getValue()
The predicted value of the row's [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]. The value depends on the column's DataType: * CATEGORY - the predicted (with the above confidence `score`) CATEGORY value. * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
.google.protobuf.Value value = 2;
- Returns:
- The value.
-
getValueOrBuilder
com.google.protobuf.ValueOrBuilder getValueOrBuilder()
The predicted value of the row's [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]. The value depends on the column's DataType: * CATEGORY - the predicted (with the above confidence `score`) CATEGORY value. * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
.google.protobuf.Value value = 2;
-
getTablesModelColumnInfoList
List<TablesModelColumnInfo> getTablesModelColumnInfoList()
Output only. Auxiliary information for each of the model's [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] with respect to this particular prediction. If no other fields than [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] and [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] would be populated, then this whole field is not.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
-
getTablesModelColumnInfo
TablesModelColumnInfo getTablesModelColumnInfo(int index)
Output only. Auxiliary information for each of the model's [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] with respect to this particular prediction. If no other fields than [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] and [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] would be populated, then this whole field is not.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
-
getTablesModelColumnInfoCount
int getTablesModelColumnInfoCount()
Output only. Auxiliary information for each of the model's [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] with respect to this particular prediction. If no other fields than [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] and [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] would be populated, then this whole field is not.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
-
getTablesModelColumnInfoOrBuilderList
List<? extends TablesModelColumnInfoOrBuilder> getTablesModelColumnInfoOrBuilderList()
Output only. Auxiliary information for each of the model's [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] with respect to this particular prediction. If no other fields than [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] and [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] would be populated, then this whole field is not.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
-
getTablesModelColumnInfoOrBuilder
TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(int index)
Output only. Auxiliary information for each of the model's [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] with respect to this particular prediction. If no other fields than [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] and [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] would be populated, then this whole field is not.
repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
-
getBaselineScore
float getBaselineScore()
Output only. Stores the prediction score for the baseline example, which is defined as the example with all values set to their baseline values. This is used as part of the Sampled Shapley explanation of the model's prediction. This field is populated only when feature importance is requested. For regression models, this holds the baseline prediction for the baseline example. For classification models, this holds the baseline prediction for the baseline example for the argmax class.
float baseline_score = 5;
- Returns:
- The baselineScore.
-
-