Package com.google.cloud.automl.v1beta1
Interface ModelEvaluationOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ModelEvaluation
,ModelEvaluation.Builder
public interface ModelEvaluationOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
hasClassificationEvaluationMetrics
boolean hasClassificationEvaluationMetrics()
Model evaluation metrics for image, text, video and tables classification. Tables problem is considered a classification when the target column is CATEGORY DataType.
.google.cloud.automl.v1beta1.ClassificationEvaluationMetrics classification_evaluation_metrics = 8;
- Returns:
- Whether the classificationEvaluationMetrics field is set.
-
getClassificationEvaluationMetrics
ClassificationProto.ClassificationEvaluationMetrics getClassificationEvaluationMetrics()
Model evaluation metrics for image, text, video and tables classification. Tables problem is considered a classification when the target column is CATEGORY DataType.
.google.cloud.automl.v1beta1.ClassificationEvaluationMetrics classification_evaluation_metrics = 8;
- Returns:
- The classificationEvaluationMetrics.
-
getClassificationEvaluationMetricsOrBuilder
ClassificationProto.ClassificationEvaluationMetricsOrBuilder getClassificationEvaluationMetricsOrBuilder()
Model evaluation metrics for image, text, video and tables classification. Tables problem is considered a classification when the target column is CATEGORY DataType.
.google.cloud.automl.v1beta1.ClassificationEvaluationMetrics classification_evaluation_metrics = 8;
-
hasRegressionEvaluationMetrics
boolean hasRegressionEvaluationMetrics()
Model evaluation metrics for Tables regression. Tables problem is considered a regression when the target column has FLOAT64 DataType.
.google.cloud.automl.v1beta1.RegressionEvaluationMetrics regression_evaluation_metrics = 24;
- Returns:
- Whether the regressionEvaluationMetrics field is set.
-
getRegressionEvaluationMetrics
RegressionProto.RegressionEvaluationMetrics getRegressionEvaluationMetrics()
Model evaluation metrics for Tables regression. Tables problem is considered a regression when the target column has FLOAT64 DataType.
.google.cloud.automl.v1beta1.RegressionEvaluationMetrics regression_evaluation_metrics = 24;
- Returns:
- The regressionEvaluationMetrics.
-
getRegressionEvaluationMetricsOrBuilder
RegressionProto.RegressionEvaluationMetricsOrBuilder getRegressionEvaluationMetricsOrBuilder()
Model evaluation metrics for Tables regression. Tables problem is considered a regression when the target column has FLOAT64 DataType.
.google.cloud.automl.v1beta1.RegressionEvaluationMetrics regression_evaluation_metrics = 24;
-
hasTranslationEvaluationMetrics
boolean hasTranslationEvaluationMetrics()
Model evaluation metrics for translation.
.google.cloud.automl.v1beta1.TranslationEvaluationMetrics translation_evaluation_metrics = 9;
- Returns:
- Whether the translationEvaluationMetrics field is set.
-
getTranslationEvaluationMetrics
TranslationEvaluationMetrics getTranslationEvaluationMetrics()
Model evaluation metrics for translation.
.google.cloud.automl.v1beta1.TranslationEvaluationMetrics translation_evaluation_metrics = 9;
- Returns:
- The translationEvaluationMetrics.
-
getTranslationEvaluationMetricsOrBuilder
TranslationEvaluationMetricsOrBuilder getTranslationEvaluationMetricsOrBuilder()
Model evaluation metrics for translation.
.google.cloud.automl.v1beta1.TranslationEvaluationMetrics translation_evaluation_metrics = 9;
-
hasImageObjectDetectionEvaluationMetrics
boolean hasImageObjectDetectionEvaluationMetrics()
Model evaluation metrics for image object detection.
.google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics image_object_detection_evaluation_metrics = 12;
- Returns:
- Whether the imageObjectDetectionEvaluationMetrics field is set.
-
getImageObjectDetectionEvaluationMetrics
ImageObjectDetectionEvaluationMetrics getImageObjectDetectionEvaluationMetrics()
Model evaluation metrics for image object detection.
.google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics image_object_detection_evaluation_metrics = 12;
- Returns:
- The imageObjectDetectionEvaluationMetrics.
-
getImageObjectDetectionEvaluationMetricsOrBuilder
ImageObjectDetectionEvaluationMetricsOrBuilder getImageObjectDetectionEvaluationMetricsOrBuilder()
Model evaluation metrics for image object detection.
.google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics image_object_detection_evaluation_metrics = 12;
-
hasVideoObjectTrackingEvaluationMetrics
boolean hasVideoObjectTrackingEvaluationMetrics()
Model evaluation metrics for video object tracking.
.google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics video_object_tracking_evaluation_metrics = 14;
- Returns:
- Whether the videoObjectTrackingEvaluationMetrics field is set.
-
getVideoObjectTrackingEvaluationMetrics
VideoObjectTrackingEvaluationMetrics getVideoObjectTrackingEvaluationMetrics()
Model evaluation metrics for video object tracking.
.google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics video_object_tracking_evaluation_metrics = 14;
- Returns:
- The videoObjectTrackingEvaluationMetrics.
-
getVideoObjectTrackingEvaluationMetricsOrBuilder
VideoObjectTrackingEvaluationMetricsOrBuilder getVideoObjectTrackingEvaluationMetricsOrBuilder()
Model evaluation metrics for video object tracking.
.google.cloud.automl.v1beta1.VideoObjectTrackingEvaluationMetrics video_object_tracking_evaluation_metrics = 14;
-
hasTextSentimentEvaluationMetrics
boolean hasTextSentimentEvaluationMetrics()
Evaluation metrics for text sentiment models.
.google.cloud.automl.v1beta1.TextSentimentEvaluationMetrics text_sentiment_evaluation_metrics = 11;
- Returns:
- Whether the textSentimentEvaluationMetrics field is set.
-
getTextSentimentEvaluationMetrics
TextSentimentProto.TextSentimentEvaluationMetrics getTextSentimentEvaluationMetrics()
Evaluation metrics for text sentiment models.
.google.cloud.automl.v1beta1.TextSentimentEvaluationMetrics text_sentiment_evaluation_metrics = 11;
- Returns:
- The textSentimentEvaluationMetrics.
-
getTextSentimentEvaluationMetricsOrBuilder
TextSentimentProto.TextSentimentEvaluationMetricsOrBuilder getTextSentimentEvaluationMetricsOrBuilder()
Evaluation metrics for text sentiment models.
.google.cloud.automl.v1beta1.TextSentimentEvaluationMetrics text_sentiment_evaluation_metrics = 11;
-
hasTextExtractionEvaluationMetrics
boolean hasTextExtractionEvaluationMetrics()
Evaluation metrics for text extraction models.
.google.cloud.automl.v1beta1.TextExtractionEvaluationMetrics text_extraction_evaluation_metrics = 13;
- Returns:
- Whether the textExtractionEvaluationMetrics field is set.
-
getTextExtractionEvaluationMetrics
TextExtractionEvaluationMetrics getTextExtractionEvaluationMetrics()
Evaluation metrics for text extraction models.
.google.cloud.automl.v1beta1.TextExtractionEvaluationMetrics text_extraction_evaluation_metrics = 13;
- Returns:
- The textExtractionEvaluationMetrics.
-
getTextExtractionEvaluationMetricsOrBuilder
TextExtractionEvaluationMetricsOrBuilder getTextExtractionEvaluationMetricsOrBuilder()
Evaluation metrics for text extraction models.
.google.cloud.automl.v1beta1.TextExtractionEvaluationMetrics text_extraction_evaluation_metrics = 13;
-
getName
String getName()
Output only. Resource name of the model evaluation. Format: `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
string name = 1;
- Returns:
- The name.
-
getNameBytes
com.google.protobuf.ByteString getNameBytes()
Output only. Resource name of the model evaluation. Format: `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
string name = 1;
- Returns:
- The bytes for name.
-
getAnnotationSpecId
String getAnnotationSpecId()
Output only. The ID of the annotation spec that the model evaluation applies to. The The ID is empty for the overall model evaluation. For Tables annotation specs in the dataset do not exist and this ID is always not set, but for CLASSIFICATION [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] the [display_name][google.cloud.automl.v1beta1.ModelEvaluation.display_name] field is used.
string annotation_spec_id = 2;
- Returns:
- The annotationSpecId.
-
getAnnotationSpecIdBytes
com.google.protobuf.ByteString getAnnotationSpecIdBytes()
Output only. The ID of the annotation spec that the model evaluation applies to. The The ID is empty for the overall model evaluation. For Tables annotation specs in the dataset do not exist and this ID is always not set, but for CLASSIFICATION [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] the [display_name][google.cloud.automl.v1beta1.ModelEvaluation.display_name] field is used.
string annotation_spec_id = 2;
- Returns:
- The bytes for annotationSpecId.
-
getDisplayName
String getDisplayName()
Output only. The value of [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] at the moment when the model was trained. Because this field returns a value at model training time, for different models trained from the same dataset, the values may differ, since display names could had been changed between the two model's trainings. For Tables CLASSIFICATION [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] distinct values of the target column at the moment of the model evaluation are populated here. The display_name is empty for the overall model evaluation.
string display_name = 15;
- Returns:
- The displayName.
-
getDisplayNameBytes
com.google.protobuf.ByteString getDisplayNameBytes()
Output only. The value of [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] at the moment when the model was trained. Because this field returns a value at model training time, for different models trained from the same dataset, the values may differ, since display names could had been changed between the two model's trainings. For Tables CLASSIFICATION [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] distinct values of the target column at the moment of the model evaluation are populated here. The display_name is empty for the overall model evaluation.
string display_name = 15;
- Returns:
- The bytes for displayName.
-
hasCreateTime
boolean hasCreateTime()
Output only. Timestamp when this model evaluation was created.
.google.protobuf.Timestamp create_time = 5;
- Returns:
- Whether the createTime field is set.
-
getCreateTime
com.google.protobuf.Timestamp getCreateTime()
Output only. Timestamp when this model evaluation was created.
.google.protobuf.Timestamp create_time = 5;
- Returns:
- The createTime.
-
getCreateTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getCreateTimeOrBuilder()
Output only. Timestamp when this model evaluation was created.
.google.protobuf.Timestamp create_time = 5;
-
getEvaluatedExampleCount
int getEvaluatedExampleCount()
Output only. The number of examples used for model evaluation, i.e. for which ground truth from time of model creation is compared against the predicted annotations created by the model. For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is the total number of all examples used for evaluation. Otherwise, this is the count of examples that according to the ground truth were annotated by the [annotation_spec_id][google.cloud.automl.v1beta1.ModelEvaluation.annotation_spec_id].
int32 evaluated_example_count = 6;
- Returns:
- The evaluatedExampleCount.
-
getMetricsCase
ModelEvaluation.MetricsCase getMetricsCase()
-
-