Package com.google.cloud.automl.v1
Interface ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ClassificationEvaluationMetrics.ConfidenceMetricsEntry
,ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder
- Enclosing class:
- ClassificationEvaluationMetrics
public static interface ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description float
getConfidenceThreshold()
Output only.float
getF1Score()
Output only.float
getF1ScoreAt1()
Output only.long
getFalseNegativeCount()
Output only.long
getFalsePositiveCount()
Output only.float
getFalsePositiveRate()
Output only.float
getFalsePositiveRateAt1()
Output only.int
getPositionThreshold()
Output only.float
getPrecision()
Output only.float
getPrecisionAt1()
Output only.float
getRecall()
Output only.float
getRecallAt1()
Output only.long
getTrueNegativeCount()
Output only.long
getTruePositiveCount()
Output only.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getConfidenceThreshold
float getConfidenceThreshold()
Output only. Metrics are computed with an assumption that the model never returns predictions with score lower than this value.
float confidence_threshold = 1;
- Returns:
- The confidenceThreshold.
-
getPositionThreshold
int getPositionThreshold()
Output only. Metrics are computed with an assumption that the model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidence_threshold.
int32 position_threshold = 14;
- Returns:
- The positionThreshold.
-
getRecall
float getRecall()
Output only. Recall (True Positive Rate) for the given confidence threshold.
float recall = 2;
- Returns:
- The recall.
-
getPrecision
float getPrecision()
Output only. Precision for the given confidence threshold.
float precision = 3;
- Returns:
- The precision.
-
getFalsePositiveRate
float getFalsePositiveRate()
Output only. False Positive Rate for the given confidence threshold.
float false_positive_rate = 8;
- Returns:
- The falsePositiveRate.
-
getF1Score
float getF1Score()
Output only. The harmonic mean of recall and precision.
float f1_score = 4;
- Returns:
- The f1Score.
-
getRecallAt1
float getRecallAt1()
Output only. The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
float recall_at1 = 5;
- Returns:
- The recallAt1.
-
getPrecisionAt1
float getPrecisionAt1()
Output only. The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
float precision_at1 = 6;
- Returns:
- The precisionAt1.
-
getFalsePositiveRateAt1
float getFalsePositiveRateAt1()
Output only. The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
float false_positive_rate_at1 = 9;
- Returns:
- The falsePositiveRateAt1.
-
getF1ScoreAt1
float getF1ScoreAt1()
Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
float f1_score_at1 = 7;
- Returns:
- The f1ScoreAt1.
-
getTruePositiveCount
long getTruePositiveCount()
Output only. The number of model created labels that match a ground truth label.
int64 true_positive_count = 10;
- Returns:
- The truePositiveCount.
-
getFalsePositiveCount
long getFalsePositiveCount()
Output only. The number of model created labels that do not match a ground truth label.
int64 false_positive_count = 11;
- Returns:
- The falsePositiveCount.
-
getFalseNegativeCount
long getFalseNegativeCount()
Output only. The number of ground truth labels that are not matched by a model created label.
int64 false_negative_count = 12;
- Returns:
- The falseNegativeCount.
-
getTrueNegativeCount
long getTrueNegativeCount()
Output only. The number of labels that were not created by the model, but if they would, they would not match a ground truth label.
int64 true_negative_count = 13;
- Returns:
- The trueNegativeCount.
-
-