Interface ModelExplanationOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ModelExplanation
,ModelExplanation.Builder
public interface ModelExplanationOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Attribution
getMeanAttributions(int index)
Output only.int
getMeanAttributionsCount()
Output only.List<Attribution>
getMeanAttributionsList()
Output only.AttributionOrBuilder
getMeanAttributionsOrBuilder(int index)
Output only.List<? extends AttributionOrBuilder>
getMeanAttributionsOrBuilderList()
Output only.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getMeanAttributionsList
List<Attribution> getMeanAttributionsList()
Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] can be used to identify which output this attribution is explaining. The [baselineOutputValue][google.cloud.aiplatform.v1beta1.Attribution.baseline_output_value], [instanceOutputValue][google.cloud.aiplatform.v1beta1.Attribution.instance_output_value] and [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] fields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. [Attribution.approximation_error][google.cloud.aiplatform.v1beta1.Attribution.approximation_error] is not populated.
repeated .google.cloud.aiplatform.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getMeanAttributions
Attribution getMeanAttributions(int index)
Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] can be used to identify which output this attribution is explaining. The [baselineOutputValue][google.cloud.aiplatform.v1beta1.Attribution.baseline_output_value], [instanceOutputValue][google.cloud.aiplatform.v1beta1.Attribution.instance_output_value] and [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] fields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. [Attribution.approximation_error][google.cloud.aiplatform.v1beta1.Attribution.approximation_error] is not populated.
repeated .google.cloud.aiplatform.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getMeanAttributionsCount
int getMeanAttributionsCount()
Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] can be used to identify which output this attribution is explaining. The [baselineOutputValue][google.cloud.aiplatform.v1beta1.Attribution.baseline_output_value], [instanceOutputValue][google.cloud.aiplatform.v1beta1.Attribution.instance_output_value] and [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] fields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. [Attribution.approximation_error][google.cloud.aiplatform.v1beta1.Attribution.approximation_error] is not populated.
repeated .google.cloud.aiplatform.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getMeanAttributionsOrBuilderList
List<? extends AttributionOrBuilder> getMeanAttributionsOrBuilderList()
Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] can be used to identify which output this attribution is explaining. The [baselineOutputValue][google.cloud.aiplatform.v1beta1.Attribution.baseline_output_value], [instanceOutputValue][google.cloud.aiplatform.v1beta1.Attribution.instance_output_value] and [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] fields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. [Attribution.approximation_error][google.cloud.aiplatform.v1beta1.Attribution.approximation_error] is not populated.
repeated .google.cloud.aiplatform.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getMeanAttributionsOrBuilder
AttributionOrBuilder getMeanAttributionsOrBuilder(int index)
Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] can be used to identify which output this attribution is explaining. The [baselineOutputValue][google.cloud.aiplatform.v1beta1.Attribution.baseline_output_value], [instanceOutputValue][google.cloud.aiplatform.v1beta1.Attribution.instance_output_value] and [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] fields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. [Attribution.approximation_error][google.cloud.aiplatform.v1beta1.Attribution.approximation_error] is not populated.
repeated .google.cloud.aiplatform.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
-