Interface ModelEvaluation.BiasConfigOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ModelEvaluation.BiasConfig
,ModelEvaluation.BiasConfig.Builder
- Enclosing class:
- ModelEvaluation
public static interface ModelEvaluation.BiasConfigOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description ModelEvaluationSlice.Slice.SliceSpec
getBiasSlices()
Specification for how the data should be sliced for bias.ModelEvaluationSlice.Slice.SliceSpecOrBuilder
getBiasSlicesOrBuilder()
Specification for how the data should be sliced for bias.String
getLabels(int index)
Positive labels selection on the target field.com.google.protobuf.ByteString
getLabelsBytes(int index)
Positive labels selection on the target field.int
getLabelsCount()
Positive labels selection on the target field.List<String>
getLabelsList()
Positive labels selection on the target field.boolean
hasBiasSlices()
Specification for how the data should be sliced for bias.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
hasBiasSlices
boolean hasBiasSlices()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset: Example 1: bias_slices = [{'education': 'low'}] A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'. Example 2: bias_slices = [{'education': 'low'}, {'education': 'high'}] Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
- Returns:
- Whether the biasSlices field is set.
-
getBiasSlices
ModelEvaluationSlice.Slice.SliceSpec getBiasSlices()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset: Example 1: bias_slices = [{'education': 'low'}] A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'. Example 2: bias_slices = [{'education': 'low'}, {'education': 'high'}] Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
- Returns:
- The biasSlices.
-
getBiasSlicesOrBuilder
ModelEvaluationSlice.Slice.SliceSpecOrBuilder getBiasSlicesOrBuilder()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset: Example 1: bias_slices = [{'education': 'low'}] A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'. Example 2: bias_slices = [{'education': 'low'}, {'education': 'high'}] Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
-
getLabelsList
List<String> getLabelsList()
Positive labels selection on the target field.
repeated string labels = 2;
- Returns:
- A list containing the labels.
-
getLabelsCount
int getLabelsCount()
Positive labels selection on the target field.
repeated string labels = 2;
- Returns:
- The count of labels.
-
getLabels
String getLabels(int index)
Positive labels selection on the target field.
repeated string labels = 2;
- Parameters:
index
- The index of the element to return.- Returns:
- The labels at the given index.
-
getLabelsBytes
com.google.protobuf.ByteString getLabelsBytes(int index)
Positive labels selection on the target field.
repeated string labels = 2;
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the labels at the given index.
-
-