Interface IntegratedGradientsAttributionOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
IntegratedGradientsAttribution
,IntegratedGradientsAttribution.Builder
public interface IntegratedGradientsAttributionOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description BlurBaselineConfig
getBlurBaselineConfig()
Config for IG with blur baseline.BlurBaselineConfigOrBuilder
getBlurBaselineConfigOrBuilder()
Config for IG with blur baseline.SmoothGradConfig
getSmoothGradConfig()
Config for SmoothGrad approximation of gradients.SmoothGradConfigOrBuilder
getSmoothGradConfigOrBuilder()
Config for SmoothGrad approximation of gradients.int
getStepCount()
Required.boolean
hasBlurBaselineConfig()
Config for IG with blur baseline.boolean
hasSmoothGradConfig()
Config for SmoothGrad approximation of gradients.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getStepCount
int getStepCount()
Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- The stepCount.
-
hasSmoothGradConfig
boolean hasSmoothGradConfig()
Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
- Returns:
- Whether the smoothGradConfig field is set.
-
getSmoothGradConfig
SmoothGradConfig getSmoothGradConfig()
Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
- Returns:
- The smoothGradConfig.
-
getSmoothGradConfigOrBuilder
SmoothGradConfigOrBuilder getSmoothGradConfigOrBuilder()
Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
-
hasBlurBaselineConfig
boolean hasBlurBaselineConfig()
Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
- Returns:
- Whether the blurBaselineConfig field is set.
-
getBlurBaselineConfig
BlurBaselineConfig getBlurBaselineConfig()
Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
- Returns:
- The blurBaselineConfig.
-
getBlurBaselineConfigOrBuilder
BlurBaselineConfigOrBuilder getBlurBaselineConfigOrBuilder()
Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
-
-