Interface ExplanationMetadataOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
ExplanationMetadata
,ExplanationMetadata.Builder
public interface ExplanationMetadataOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Deprecated Methods Modifier and Type Method Description boolean
containsInputs(String key)
Required.boolean
containsOutputs(String key)
Required.String
getFeatureAttributionsSchemaUri()
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions].com.google.protobuf.ByteString
getFeatureAttributionsSchemaUriBytes()
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions].Map<String,ExplanationMetadata.InputMetadata>
getInputs()
Deprecated.int
getInputsCount()
Required.Map<String,ExplanationMetadata.InputMetadata>
getInputsMap()
Required.ExplanationMetadata.InputMetadata
getInputsOrDefault(String key, ExplanationMetadata.InputMetadata defaultValue)
Required.ExplanationMetadata.InputMetadata
getInputsOrThrow(String key)
Required.String
getLatentSpaceSource()
Name of the source to generate embeddings for example based explanations.com.google.protobuf.ByteString
getLatentSpaceSourceBytes()
Name of the source to generate embeddings for example based explanations.Map<String,ExplanationMetadata.OutputMetadata>
getOutputs()
Deprecated.int
getOutputsCount()
Required.Map<String,ExplanationMetadata.OutputMetadata>
getOutputsMap()
Required.ExplanationMetadata.OutputMetadata
getOutputsOrDefault(String key, ExplanationMetadata.OutputMetadata defaultValue)
Required.ExplanationMetadata.OutputMetadata
getOutputsOrThrow(String key)
Required.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getInputsCount
int getInputsCount()
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs]. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
-
containsInputs
boolean containsInputs(String key)
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs]. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getInputs
@Deprecated Map<String,ExplanationMetadata.InputMetadata> getInputs()
Deprecated.UsegetInputsMap()
instead.
-
getInputsMap
Map<String,ExplanationMetadata.InputMetadata> getInputsMap()
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs]. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getInputsOrDefault
ExplanationMetadata.InputMetadata getInputsOrDefault(String key, ExplanationMetadata.InputMetadata defaultValue)
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs]. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getInputsOrThrow
ExplanationMetadata.InputMetadata getInputsOrThrow(String key)
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs]. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getOutputsCount
int getOutputsCount()
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
-
containsOutputs
boolean containsOutputs(String key)
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
-
getOutputs
@Deprecated Map<String,ExplanationMetadata.OutputMetadata> getOutputs()
Deprecated.UsegetOutputsMap()
instead.
-
getOutputsMap
Map<String,ExplanationMetadata.OutputMetadata> getOutputsMap()
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
-
getOutputsOrDefault
ExplanationMetadata.OutputMetadata getOutputsOrDefault(String key, ExplanationMetadata.OutputMetadata defaultValue)
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
-
getOutputsOrThrow
ExplanationMetadata.OutputMetadata getOutputsOrThrow(String key)
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
-
getFeatureAttributionsSchemaUri
String getFeatureAttributionsSchemaUri()
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions]. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string feature_attributions_schema_uri = 3;
- Returns:
- The featureAttributionsSchemaUri.
-
getFeatureAttributionsSchemaUriBytes
com.google.protobuf.ByteString getFeatureAttributionsSchemaUriBytes()
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions]. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string feature_attributions_schema_uri = 3;
- Returns:
- The bytes for featureAttributionsSchemaUri.
-
getLatentSpaceSource
String getLatentSpaceSource()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
- Returns:
- The latentSpaceSource.
-
getLatentSpaceSourceBytes
com.google.protobuf.ByteString getLatentSpaceSourceBytes()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
- Returns:
- The bytes for latentSpaceSource.
-
-