Interface DeployedModelOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
DeployedModel
,DeployedModel.Builder
public interface DeployedModelOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description AutomaticResources
getAutomaticResources()
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.AutomaticResourcesOrBuilder
getAutomaticResourcesOrBuilder()
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.com.google.protobuf.Timestamp
getCreateTime()
Output only.com.google.protobuf.TimestampOrBuilder
getCreateTimeOrBuilder()
Output only.DedicatedResources
getDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.DedicatedResourcesOrBuilder
getDedicatedResourcesOrBuilder()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.boolean
getDisableExplanations()
If true, deploy the model without explainable feature, regardless the existence of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] or [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec].String
getDisplayName()
The display name of the DeployedModel.com.google.protobuf.ByteString
getDisplayNameBytes()
The display name of the DeployedModel.boolean
getEnableAccessLogging()
If true, online prediction access logs are sent to Cloud Logging.boolean
getEnableContainerLogging()
If true, the container of the DeployedModel instances will send `stderr` and `stdout` streams to Cloud Logging.ExplanationSpec
getExplanationSpec()
Explanation configuration for this DeployedModel.ExplanationSpecOrBuilder
getExplanationSpecOrBuilder()
Explanation configuration for this DeployedModel.String
getId()
Immutable.com.google.protobuf.ByteString
getIdBytes()
Immutable.String
getModel()
Required.com.google.protobuf.ByteString
getModelBytes()
Required.String
getModelVersionId()
Output only.com.google.protobuf.ByteString
getModelVersionIdBytes()
Output only.DeployedModel.PredictionResourcesCase
getPredictionResourcesCase()
PrivateEndpoints
getPrivateEndpoints()
Output only.PrivateEndpointsOrBuilder
getPrivateEndpointsOrBuilder()
Output only.String
getServiceAccount()
The service account that the DeployedModel's container runs as.com.google.protobuf.ByteString
getServiceAccountBytes()
The service account that the DeployedModel's container runs as.String
getSharedResources()
The resource name of the shared DeploymentResourcePool to deploy on.com.google.protobuf.ByteString
getSharedResourcesBytes()
The resource name of the shared DeploymentResourcePool to deploy on.boolean
hasAutomaticResources()
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.boolean
hasCreateTime()
Output only.boolean
hasDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.boolean
hasExplanationSpec()
Explanation configuration for this DeployedModel.boolean
hasPrivateEndpoints()
Output only.boolean
hasSharedResources()
The resource name of the shared DeploymentResourcePool to deploy on.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
hasDedicatedResources
boolean hasDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.aiplatform.v1beta1.DedicatedResources dedicated_resources = 7;
- Returns:
- Whether the dedicatedResources field is set.
-
getDedicatedResources
DedicatedResources getDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.aiplatform.v1beta1.DedicatedResources dedicated_resources = 7;
- Returns:
- The dedicatedResources.
-
getDedicatedResourcesOrBuilder
DedicatedResourcesOrBuilder getDedicatedResourcesOrBuilder()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.aiplatform.v1beta1.DedicatedResources dedicated_resources = 7;
-
hasAutomaticResources
boolean hasAutomaticResources()
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.
.google.cloud.aiplatform.v1beta1.AutomaticResources automatic_resources = 8;
- Returns:
- Whether the automaticResources field is set.
-
getAutomaticResources
AutomaticResources getAutomaticResources()
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.
.google.cloud.aiplatform.v1beta1.AutomaticResources automatic_resources = 8;
- Returns:
- The automaticResources.
-
getAutomaticResourcesOrBuilder
AutomaticResourcesOrBuilder getAutomaticResourcesOrBuilder()
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration.
.google.cloud.aiplatform.v1beta1.AutomaticResources automatic_resources = 8;
-
hasSharedResources
boolean hasSharedResources()
The resource name of the shared DeploymentResourcePool to deploy on. Format: `projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}`
string shared_resources = 17 [(.google.api.resource_reference) = { ... }
- Returns:
- Whether the sharedResources field is set.
-
getSharedResources
String getSharedResources()
The resource name of the shared DeploymentResourcePool to deploy on. Format: `projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}`
string shared_resources = 17 [(.google.api.resource_reference) = { ... }
- Returns:
- The sharedResources.
-
getSharedResourcesBytes
com.google.protobuf.ByteString getSharedResourcesBytes()
The resource name of the shared DeploymentResourcePool to deploy on. Format: `projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}`
string shared_resources = 17 [(.google.api.resource_reference) = { ... }
- Returns:
- The bytes for sharedResources.
-
getId
String getId()
Immutable. The ID of the DeployedModel. If not provided upon deployment, Vertex AI will generate a value for this ID. This value should be 1-10 characters, and valid characters are /[0-9]/.
string id = 1 [(.google.api.field_behavior) = IMMUTABLE];
- Returns:
- The id.
-
getIdBytes
com.google.protobuf.ByteString getIdBytes()
Immutable. The ID of the DeployedModel. If not provided upon deployment, Vertex AI will generate a value for this ID. This value should be 1-10 characters, and valid characters are /[0-9]/.
string id = 1 [(.google.api.field_behavior) = IMMUTABLE];
- Returns:
- The bytes for id.
-
getModel
String getModel()
Required. The resource name of the Model that this is the deployment of. Note that the Model may be in a different location than the DeployedModel's Endpoint. The resource name may contain version id or version alias to specify the version. Example: `projects/{project}/locations/{location}/models/{model}@2` or `projects/{project}/locations/{location}/models/{model}@golden` if no version is specified, the default version will be deployed.
string model = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
- Returns:
- The model.
-
getModelBytes
com.google.protobuf.ByteString getModelBytes()
Required. The resource name of the Model that this is the deployment of. Note that the Model may be in a different location than the DeployedModel's Endpoint. The resource name may contain version id or version alias to specify the version. Example: `projects/{project}/locations/{location}/models/{model}@2` or `projects/{project}/locations/{location}/models/{model}@golden` if no version is specified, the default version will be deployed.
string model = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
- Returns:
- The bytes for model.
-
getModelVersionId
String getModelVersionId()
Output only. The version ID of the model that is deployed.
string model_version_id = 18 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The modelVersionId.
-
getModelVersionIdBytes
com.google.protobuf.ByteString getModelVersionIdBytes()
Output only. The version ID of the model that is deployed.
string model_version_id = 18 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The bytes for modelVersionId.
-
getDisplayName
String getDisplayName()
The display name of the DeployedModel. If not provided upon creation, the Model's display_name is used.
string display_name = 3;
- Returns:
- The displayName.
-
getDisplayNameBytes
com.google.protobuf.ByteString getDisplayNameBytes()
The display name of the DeployedModel. If not provided upon creation, the Model's display_name is used.
string display_name = 3;
- Returns:
- The bytes for displayName.
-
hasCreateTime
boolean hasCreateTime()
Output only. Timestamp when the DeployedModel was created.
.google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the createTime field is set.
-
getCreateTime
com.google.protobuf.Timestamp getCreateTime()
Output only. Timestamp when the DeployedModel was created.
.google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The createTime.
-
getCreateTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getCreateTimeOrBuilder()
Output only. Timestamp when the DeployedModel was created.
.google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasExplanationSpec
boolean hasExplanationSpec()
Explanation configuration for this DeployedModel. When deploying a Model using [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel], this value overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec]. All fields of [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] are optional in the request. If a field of [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] is not populated, the value of the same field of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is inherited. If the corresponding [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is not populated, all fields of the [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] will be used for the explanation configuration.
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 9;
- Returns:
- Whether the explanationSpec field is set.
-
getExplanationSpec
ExplanationSpec getExplanationSpec()
Explanation configuration for this DeployedModel. When deploying a Model using [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel], this value overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec]. All fields of [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] are optional in the request. If a field of [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] is not populated, the value of the same field of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is inherited. If the corresponding [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is not populated, all fields of the [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] will be used for the explanation configuration.
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 9;
- Returns:
- The explanationSpec.
-
getExplanationSpecOrBuilder
ExplanationSpecOrBuilder getExplanationSpecOrBuilder()
Explanation configuration for this DeployedModel. When deploying a Model using [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel], this value overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec]. All fields of [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] are optional in the request. If a field of [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] is not populated, the value of the same field of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is inherited. If the corresponding [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is not populated, all fields of the [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] will be used for the explanation configuration.
.google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 9;
-
getDisableExplanations
boolean getDisableExplanations()
If true, deploy the model without explainable feature, regardless the existence of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] or [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec].
bool disable_explanations = 19;
- Returns:
- The disableExplanations.
-
getServiceAccount
String getServiceAccount()
The service account that the DeployedModel's container runs as. Specify the email address of the service account. If this service account is not specified, the container runs as a service account that doesn't have access to the resource project. Users deploying the Model must have the `iam.serviceAccounts.actAs` permission on this service account.
string service_account = 11;
- Returns:
- The serviceAccount.
-
getServiceAccountBytes
com.google.protobuf.ByteString getServiceAccountBytes()
The service account that the DeployedModel's container runs as. Specify the email address of the service account. If this service account is not specified, the container runs as a service account that doesn't have access to the resource project. Users deploying the Model must have the `iam.serviceAccounts.actAs` permission on this service account.
string service_account = 11;
- Returns:
- The bytes for serviceAccount.
-
getEnableContainerLogging
boolean getEnableContainerLogging()
If true, the container of the DeployedModel instances will send `stderr` and `stdout` streams to Cloud Logging. Only supported for custom-trained Models and AutoML Tabular Models.
bool enable_container_logging = 12;
- Returns:
- The enableContainerLogging.
-
getEnableAccessLogging
boolean getEnableAccessLogging()
If true, online prediction access logs are sent to Cloud Logging. These logs are like standard server access logs, containing information like timestamp and latency for each prediction request. Note that logs may incur a cost, especially if your project receives prediction requests at a high queries per second rate (QPS). Estimate your costs before enabling this option.
bool enable_access_logging = 13;
- Returns:
- The enableAccessLogging.
-
hasPrivateEndpoints
boolean hasPrivateEndpoints()
Output only. Provide paths for users to send predict/explain/health requests directly to the deployed model services running on Cloud via private services access. This field is populated if [network][google.cloud.aiplatform.v1beta1.Endpoint.network] is configured.
.google.cloud.aiplatform.v1beta1.PrivateEndpoints private_endpoints = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the privateEndpoints field is set.
-
getPrivateEndpoints
PrivateEndpoints getPrivateEndpoints()
Output only. Provide paths for users to send predict/explain/health requests directly to the deployed model services running on Cloud via private services access. This field is populated if [network][google.cloud.aiplatform.v1beta1.Endpoint.network] is configured.
.google.cloud.aiplatform.v1beta1.PrivateEndpoints private_endpoints = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The privateEndpoints.
-
getPrivateEndpointsOrBuilder
PrivateEndpointsOrBuilder getPrivateEndpointsOrBuilder()
Output only. Provide paths for users to send predict/explain/health requests directly to the deployed model services running on Cloud via private services access. This field is populated if [network][google.cloud.aiplatform.v1beta1.Endpoint.network] is configured.
.google.cloud.aiplatform.v1beta1.PrivateEndpoints private_endpoints = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getPredictionResourcesCase
DeployedModel.PredictionResourcesCase getPredictionResourcesCase()
-
-