Interface AutoMlTablesInputsOrBuilder

  • All Superinterfaces:
    com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
    All Known Implementing Classes:
    AutoMlTablesInputs, AutoMlTablesInputs.Builder

    public interface AutoMlTablesInputsOrBuilder
    extends com.google.protobuf.MessageOrBuilder
    • Method Detail

      • hasOptimizationObjectiveRecallValue

        boolean hasOptimizationObjectiveRecallValue()
         Required when optimization_objective is "maximize-precision-at-recall".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_recall_value = 5;
        Returns:
        Whether the optimizationObjectiveRecallValue field is set.
      • getOptimizationObjectiveRecallValue

        float getOptimizationObjectiveRecallValue()
         Required when optimization_objective is "maximize-precision-at-recall".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_recall_value = 5;
        Returns:
        The optimizationObjectiveRecallValue.
      • hasOptimizationObjectivePrecisionValue

        boolean hasOptimizationObjectivePrecisionValue()
         Required when optimization_objective is "maximize-recall-at-precision".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_precision_value = 6;
        Returns:
        Whether the optimizationObjectivePrecisionValue field is set.
      • getOptimizationObjectivePrecisionValue

        float getOptimizationObjectivePrecisionValue()
         Required when optimization_objective is "maximize-recall-at-precision".
         Must be between 0 and 1, inclusive.
         
        float optimization_objective_precision_value = 6;
        Returns:
        The optimizationObjectivePrecisionValue.
      • getPredictionType

        String getPredictionType()
         The type of prediction the Model is to produce.
           "classification" - Predict one out of multiple target values is
                              picked for each row.
           "regression" - Predict a value based on its relation to other values.
                          This type is available only to columns that contain
                          semantically numeric values, i.e. integers or floating
                          point number, even if stored as e.g. strings.
         
        string prediction_type = 1;
        Returns:
        The predictionType.
      • getPredictionTypeBytes

        com.google.protobuf.ByteString getPredictionTypeBytes()
         The type of prediction the Model is to produce.
           "classification" - Predict one out of multiple target values is
                              picked for each row.
           "regression" - Predict a value based on its relation to other values.
                          This type is available only to columns that contain
                          semantically numeric values, i.e. integers or floating
                          point number, even if stored as e.g. strings.
         
        string prediction_type = 1;
        Returns:
        The bytes for predictionType.
      • getTargetColumn

        String getTargetColumn()
         The column name of the target column that the model is to predict.
         
        string target_column = 2;
        Returns:
        The targetColumn.
      • getTargetColumnBytes

        com.google.protobuf.ByteString getTargetColumnBytes()
         The column name of the target column that the model is to predict.
         
        string target_column = 2;
        Returns:
        The bytes for targetColumn.
      • getTransformationsList

        List<AutoMlTablesInputs.Transformation> getTransformationsList()
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
      • getTransformations

        AutoMlTablesInputs.Transformation getTransformations​(int index)
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
      • getTransformationsCount

        int getTransformationsCount()
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
      • getTransformationsOrBuilderList

        List<? extends AutoMlTablesInputs.TransformationOrBuilder> getTransformationsOrBuilderList()
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
      • getTransformationsOrBuilder

        AutoMlTablesInputs.TransformationOrBuilder getTransformationsOrBuilder​(int index)
         Each transformation will apply transform function to given input column.
         And the result will be used for training.
         When creating transformation for BigQuery Struct column, the column should
         be flattened using "." as the delimiter.
         
        repeated .google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation transformations = 3;
      • getOptimizationObjective

        String getOptimizationObjective()
         Objective function the model is optimizing towards. The training process
         creates a model that maximizes/minimizes the value of the objective
         function over the validation set.
        
         The supported optimization objectives depend on the prediction type.
         If the field is not set, a default objective function is used.
        
         classification (binary):
           "maximize-au-roc" (default) - Maximize the area under the receiver
                                         operating characteristic (ROC) curve.
           "minimize-log-loss" - Minimize log loss.
           "maximize-au-prc" - Maximize the area under the precision-recall curve.
           "maximize-precision-at-recall" - Maximize precision for a specified
                                           recall value.
           "maximize-recall-at-precision" - Maximize recall for a specified
                                            precision value.
        
         classification (multi-class):
           "minimize-log-loss" (default) - Minimize log loss.
        
         regression:
           "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
           "minimize-mae" - Minimize mean-absolute error (MAE).
           "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
         
        string optimization_objective = 4;
        Returns:
        The optimizationObjective.
      • getOptimizationObjectiveBytes

        com.google.protobuf.ByteString getOptimizationObjectiveBytes()
         Objective function the model is optimizing towards. The training process
         creates a model that maximizes/minimizes the value of the objective
         function over the validation set.
        
         The supported optimization objectives depend on the prediction type.
         If the field is not set, a default objective function is used.
        
         classification (binary):
           "maximize-au-roc" (default) - Maximize the area under the receiver
                                         operating characteristic (ROC) curve.
           "minimize-log-loss" - Minimize log loss.
           "maximize-au-prc" - Maximize the area under the precision-recall curve.
           "maximize-precision-at-recall" - Maximize precision for a specified
                                           recall value.
           "maximize-recall-at-precision" - Maximize recall for a specified
                                            precision value.
        
         classification (multi-class):
           "minimize-log-loss" (default) - Minimize log loss.
        
         regression:
           "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
           "minimize-mae" - Minimize mean-absolute error (MAE).
           "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
         
        string optimization_objective = 4;
        Returns:
        The bytes for optimizationObjective.
      • getTrainBudgetMilliNodeHours

        long getTrainBudgetMilliNodeHours()
         Required. The train budget of creating this model, expressed in milli node
         hours i.e. 1,000 value in this field means 1 node hour.
        
         The training cost of the model will not exceed this budget. The final cost
         will be attempted to be close to the budget, though may end up being (even)
         noticeably smaller - at the backend's discretion. This especially may
         happen when further model training ceases to provide any improvements.
        
         If the budget is set to a value known to be insufficient to train a
         model for the given dataset, the training won't be attempted and
         will error.
        
         The train budget must be between 1,000 and 72,000 milli node hours,
         inclusive.
         
        int64 train_budget_milli_node_hours = 7;
        Returns:
        The trainBudgetMilliNodeHours.
      • getDisableEarlyStopping

        boolean getDisableEarlyStopping()
         Use the entire training budget. This disables the early stopping feature.
         By default, the early stopping feature is enabled, which means that AutoML
         Tables might stop training before the entire training budget has been used.
         
        bool disable_early_stopping = 8;
        Returns:
        The disableEarlyStopping.
      • getWeightColumnName

        String getWeightColumnName()
         Column name that should be used as the weight column.
         Higher values in this column give more importance to the row
         during model training. The column must have numeric values between 0 and
         10000 inclusively; 0 means the row is ignored for training. If weight
         column field is not set, then all rows are assumed to have equal weight
         of 1.
         
        string weight_column_name = 9;
        Returns:
        The weightColumnName.
      • getWeightColumnNameBytes

        com.google.protobuf.ByteString getWeightColumnNameBytes()
         Column name that should be used as the weight column.
         Higher values in this column give more importance to the row
         during model training. The column must have numeric values between 0 and
         10000 inclusively; 0 means the row is ignored for training. If weight
         column field is not set, then all rows are assumed to have equal weight
         of 1.
         
        string weight_column_name = 9;
        Returns:
        The bytes for weightColumnName.
      • hasExportEvaluatedDataItemsConfig

        boolean hasExportEvaluatedDataItemsConfig()
         Configuration for exporting test set predictions to a BigQuery table. If
         this configuration is absent, then the export is not performed.
         
        .google.cloud.aiplatform.v1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
        Returns:
        Whether the exportEvaluatedDataItemsConfig field is set.
      • getExportEvaluatedDataItemsConfig

        ExportEvaluatedDataItemsConfig getExportEvaluatedDataItemsConfig()
         Configuration for exporting test set predictions to a BigQuery table. If
         this configuration is absent, then the export is not performed.
         
        .google.cloud.aiplatform.v1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
        Returns:
        The exportEvaluatedDataItemsConfig.
      • getExportEvaluatedDataItemsConfigOrBuilder

        ExportEvaluatedDataItemsConfigOrBuilder getExportEvaluatedDataItemsConfigOrBuilder()
         Configuration for exporting test set predictions to a BigQuery table. If
         this configuration is absent, then the export is not performed.
         
        .google.cloud.aiplatform.v1.schema.trainingjob.definition.ExportEvaluatedDataItemsConfig export_evaluated_data_items_config = 10;
      • getAdditionalExperimentsList

        List<String> getAdditionalExperimentsList()
         Additional experiment flags for the Tables training pipeline.
         
        repeated string additional_experiments = 11;
        Returns:
        A list containing the additionalExperiments.
      • getAdditionalExperimentsCount

        int getAdditionalExperimentsCount()
         Additional experiment flags for the Tables training pipeline.
         
        repeated string additional_experiments = 11;
        Returns:
        The count of additionalExperiments.
      • getAdditionalExperiments

        String getAdditionalExperiments​(int index)
         Additional experiment flags for the Tables training pipeline.
         
        repeated string additional_experiments = 11;
        Parameters:
        index - The index of the element to return.
        Returns:
        The additionalExperiments at the given index.
      • getAdditionalExperimentsBytes

        com.google.protobuf.ByteString getAdditionalExperimentsBytes​(int index)
         Additional experiment flags for the Tables training pipeline.
         
        repeated string additional_experiments = 11;
        Parameters:
        index - The index of the value to return.
        Returns:
        The bytes of the additionalExperiments at the given index.