Interface AutoMlImageClassificationInputsOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
AutoMlImageClassificationInputs
,AutoMlImageClassificationInputs.Builder
public interface AutoMlImageClassificationInputsOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description String
getBaseModelId()
The ID of the `base` model.com.google.protobuf.ByteString
getBaseModelIdBytes()
The ID of the `base` model.long
getBudgetMilliNodeHours()
The training budget of creating this model, expressed in milli node hours i.e.boolean
getDisableEarlyStopping()
Use the entire training budget.AutoMlImageClassificationInputs.ModelType
getModelType()
.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType model_type = 1;
int
getModelTypeValue()
.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType model_type = 1;
boolean
getMultiLabel()
If false, a single-label (multi-class) Model will be trained (i.e.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getModelTypeValue
int getModelTypeValue()
.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType model_type = 1;
- Returns:
- The enum numeric value on the wire for modelType.
-
getModelType
AutoMlImageClassificationInputs.ModelType getModelType()
.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType model_type = 1;
- Returns:
- The modelType.
-
getBaseModelId
String getBaseModelId()
The ID of the `base` model. If it is specified, the new model will be trained based on the `base` model. Otherwise, the new model will be trained from scratch. The `base` model must be in the same Project and Location as the new Model to train, and have the same modelType.
string base_model_id = 2;
- Returns:
- The baseModelId.
-
getBaseModelIdBytes
com.google.protobuf.ByteString getBaseModelIdBytes()
The ID of the `base` model. If it is specified, the new model will be trained based on the `base` model. Otherwise, the new model will be trained from scratch. The `base` model must be in the same Project and Location as the new Model to train, and have the same modelType.
string base_model_id = 2;
- Returns:
- The bytes for baseModelId.
-
getBudgetMilliNodeHours
long getBudgetMilliNodeHours()
The training budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The actual metadata.costMilliNodeHours will be equal or less than this value. If further model training ceases to provide any improvements, it will stop without using the full budget and the metadata.successfulStopReason will be `model-converged`. Note, node_hour = actual_hour * number_of_nodes_involved. For modelType `cloud`(default), the budget must be between 8,000 and 800,000 milli node hours, inclusive. The default value is 192,000 which represents one day in wall time, considering 8 nodes are used. For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`, `mobile-tf-high-accuracy-1`, the training budget must be between 1,000 and 100,000 milli node hours, inclusive. The default value is 24,000 which represents one day in wall time on a single node that is used.
int64 budget_milli_node_hours = 3;
- Returns:
- The budgetMilliNodeHours.
-
getDisableEarlyStopping
boolean getDisableEarlyStopping()
Use the entire training budget. This disables the early stopping feature. When false the early stopping feature is enabled, which means that AutoML Image Classification might stop training before the entire training budget has been used.
bool disable_early_stopping = 4;
- Returns:
- The disableEarlyStopping.
-
getMultiLabel
boolean getMultiLabel()
If false, a single-label (multi-class) Model will be trained (i.e. assuming that for each image just up to one annotation may be applicable). If true, a multi-label Model will be trained (i.e. assuming that for each image multiple annotations may be applicable).
bool multi_label = 5;
- Returns:
- The multiLabel.
-
-