Package com.google.cloud.aiplatform.v1
Interface TrainingPipelineOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
TrainingPipeline
,TrainingPipeline.Builder
public interface TrainingPipelineOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Deprecated Methods Modifier and Type Method Description boolean
containsLabels(String key)
The labels with user-defined metadata to organize TrainingPipelines.com.google.protobuf.Timestamp
getCreateTime()
Output only.com.google.protobuf.TimestampOrBuilder
getCreateTimeOrBuilder()
Output only.String
getDisplayName()
Required.com.google.protobuf.ByteString
getDisplayNameBytes()
Required.EncryptionSpec
getEncryptionSpec()
Customer-managed encryption key spec for a TrainingPipeline.EncryptionSpecOrBuilder
getEncryptionSpecOrBuilder()
Customer-managed encryption key spec for a TrainingPipeline.com.google.protobuf.Timestamp
getEndTime()
Output only.com.google.protobuf.TimestampOrBuilder
getEndTimeOrBuilder()
Output only.com.google.rpc.Status
getError()
Output only.com.google.rpc.StatusOrBuilder
getErrorOrBuilder()
Output only.InputDataConfig
getInputDataConfig()
Specifies Vertex AI owned input data that may be used for training the Model.InputDataConfigOrBuilder
getInputDataConfigOrBuilder()
Specifies Vertex AI owned input data that may be used for training the Model.Map<String,String>
getLabels()
Deprecated.int
getLabelsCount()
The labels with user-defined metadata to organize TrainingPipelines.Map<String,String>
getLabelsMap()
The labels with user-defined metadata to organize TrainingPipelines.String
getLabelsOrDefault(String key, String defaultValue)
The labels with user-defined metadata to organize TrainingPipelines.String
getLabelsOrThrow(String key)
The labels with user-defined metadata to organize TrainingPipelines.String
getModelId()
Optional.com.google.protobuf.ByteString
getModelIdBytes()
Optional.Model
getModelToUpload()
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline.ModelOrBuilder
getModelToUploadOrBuilder()
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline.String
getName()
Output only.com.google.protobuf.ByteString
getNameBytes()
Output only.String
getParentModel()
Optional.com.google.protobuf.ByteString
getParentModelBytes()
Optional.com.google.protobuf.Timestamp
getStartTime()
Output only.com.google.protobuf.TimestampOrBuilder
getStartTimeOrBuilder()
Output only.PipelineState
getState()
Output only.int
getStateValue()
Output only.String
getTrainingTaskDefinition()
Required.com.google.protobuf.ByteString
getTrainingTaskDefinitionBytes()
Required.com.google.protobuf.Value
getTrainingTaskInputs()
Required.com.google.protobuf.ValueOrBuilder
getTrainingTaskInputsOrBuilder()
Required.com.google.protobuf.Value
getTrainingTaskMetadata()
Output only.com.google.protobuf.ValueOrBuilder
getTrainingTaskMetadataOrBuilder()
Output only.com.google.protobuf.Timestamp
getUpdateTime()
Output only.com.google.protobuf.TimestampOrBuilder
getUpdateTimeOrBuilder()
Output only.boolean
hasCreateTime()
Output only.boolean
hasEncryptionSpec()
Customer-managed encryption key spec for a TrainingPipeline.boolean
hasEndTime()
Output only.boolean
hasError()
Output only.boolean
hasInputDataConfig()
Specifies Vertex AI owned input data that may be used for training the Model.boolean
hasModelToUpload()
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline.boolean
hasStartTime()
Output only.boolean
hasTrainingTaskInputs()
Required.boolean
hasTrainingTaskMetadata()
Output only.boolean
hasUpdateTime()
Output only.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getName
String getName()
Output only. Resource name of the TrainingPipeline.
string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The name.
-
getNameBytes
com.google.protobuf.ByteString getNameBytes()
Output only. Resource name of the TrainingPipeline.
string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The bytes for name.
-
getDisplayName
String getDisplayName()
Required. The user-defined name of this TrainingPipeline.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- The displayName.
-
getDisplayNameBytes
com.google.protobuf.ByteString getDisplayNameBytes()
Required. The user-defined name of this TrainingPipeline.
string display_name = 2 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- The bytes for displayName.
-
hasInputDataConfig
boolean hasInputDataConfig()
Specifies Vertex AI owned input data that may be used for training the Model. The TrainingPipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this config is used and if there are any special requirements on how it should be filled. If nothing about this config is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that the TrainingPipeline does not depend on this configuration.
.google.cloud.aiplatform.v1.InputDataConfig input_data_config = 3;
- Returns:
- Whether the inputDataConfig field is set.
-
getInputDataConfig
InputDataConfig getInputDataConfig()
Specifies Vertex AI owned input data that may be used for training the Model. The TrainingPipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this config is used and if there are any special requirements on how it should be filled. If nothing about this config is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that the TrainingPipeline does not depend on this configuration.
.google.cloud.aiplatform.v1.InputDataConfig input_data_config = 3;
- Returns:
- The inputDataConfig.
-
getInputDataConfigOrBuilder
InputDataConfigOrBuilder getInputDataConfigOrBuilder()
Specifies Vertex AI owned input data that may be used for training the Model. The TrainingPipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this config is used and if there are any special requirements on how it should be filled. If nothing about this config is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that the TrainingPipeline does not depend on this configuration.
.google.cloud.aiplatform.v1.InputDataConfig input_data_config = 3;
-
getTrainingTaskDefinition
String getTrainingTaskDefinition()
Required. A Google Cloud Storage path to the YAML file that defines the training task which is responsible for producing the model artifact, and may also include additional auxiliary work. The definition files that can be used here are found in gs://google-cloud-aiplatform/schema/trainingjob/definition/. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string training_task_definition = 4 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- The trainingTaskDefinition.
-
getTrainingTaskDefinitionBytes
com.google.protobuf.ByteString getTrainingTaskDefinitionBytes()
Required. A Google Cloud Storage path to the YAML file that defines the training task which is responsible for producing the model artifact, and may also include additional auxiliary work. The definition files that can be used here are found in gs://google-cloud-aiplatform/schema/trainingjob/definition/. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
string training_task_definition = 4 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- The bytes for trainingTaskDefinition.
-
hasTrainingTaskInputs
boolean hasTrainingTaskInputs()
Required. The training task's parameter(s), as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]'s `inputs`.
.google.protobuf.Value training_task_inputs = 5 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- Whether the trainingTaskInputs field is set.
-
getTrainingTaskInputs
com.google.protobuf.Value getTrainingTaskInputs()
Required. The training task's parameter(s), as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]'s `inputs`.
.google.protobuf.Value training_task_inputs = 5 [(.google.api.field_behavior) = REQUIRED];
- Returns:
- The trainingTaskInputs.
-
getTrainingTaskInputsOrBuilder
com.google.protobuf.ValueOrBuilder getTrainingTaskInputsOrBuilder()
Required. The training task's parameter(s), as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]'s `inputs`.
.google.protobuf.Value training_task_inputs = 5 [(.google.api.field_behavior) = REQUIRED];
-
hasTrainingTaskMetadata
boolean hasTrainingTaskMetadata()
Output only. The metadata information as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]'s `metadata`. This metadata is an auxiliary runtime and final information about the training task. While the pipeline is running this information is populated only at a best effort basis. Only present if the pipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] contains `metadata` object.
.google.protobuf.Value training_task_metadata = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the trainingTaskMetadata field is set.
-
getTrainingTaskMetadata
com.google.protobuf.Value getTrainingTaskMetadata()
Output only. The metadata information as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]'s `metadata`. This metadata is an auxiliary runtime and final information about the training task. While the pipeline is running this information is populated only at a best effort basis. Only present if the pipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] contains `metadata` object.
.google.protobuf.Value training_task_metadata = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The trainingTaskMetadata.
-
getTrainingTaskMetadataOrBuilder
com.google.protobuf.ValueOrBuilder getTrainingTaskMetadataOrBuilder()
Output only. The metadata information as specified in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition]'s `metadata`. This metadata is an auxiliary runtime and final information about the training task. While the pipeline is running this information is populated only at a best effort basis. Only present if the pipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] contains `metadata` object.
.google.protobuf.Value training_task_metadata = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasModelToUpload
boolean hasModelToUpload()
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline. The TrainingPipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this Model description should be populated, and if there are any special requirements regarding how it should be filled. If nothing is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that this field should not be filled and the training task either uploads the Model without a need of this information, or that training task does not support uploading a Model as part of the pipeline. When the Pipeline's state becomes `PIPELINE_STATE_SUCCEEDED` and the trained Model had been uploaded into Vertex AI, then the model_to_upload's resource [name][google.cloud.aiplatform.v1.Model.name] is populated. The Model is always uploaded into the Project and Location in which this pipeline is.
.google.cloud.aiplatform.v1.Model model_to_upload = 7;
- Returns:
- Whether the modelToUpload field is set.
-
getModelToUpload
Model getModelToUpload()
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline. The TrainingPipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this Model description should be populated, and if there are any special requirements regarding how it should be filled. If nothing is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that this field should not be filled and the training task either uploads the Model without a need of this information, or that training task does not support uploading a Model as part of the pipeline. When the Pipeline's state becomes `PIPELINE_STATE_SUCCEEDED` and the trained Model had been uploaded into Vertex AI, then the model_to_upload's resource [name][google.cloud.aiplatform.v1.Model.name] is populated. The Model is always uploaded into the Project and Location in which this pipeline is.
.google.cloud.aiplatform.v1.Model model_to_upload = 7;
- Returns:
- The modelToUpload.
-
getModelToUploadOrBuilder
ModelOrBuilder getModelToUploadOrBuilder()
Describes the Model that may be uploaded (via [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel]) by this TrainingPipeline. The TrainingPipeline's [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition] should make clear whether this Model description should be populated, and if there are any special requirements regarding how it should be filled. If nothing is mentioned in the [training_task_definition][google.cloud.aiplatform.v1.TrainingPipeline.training_task_definition], then it should be assumed that this field should not be filled and the training task either uploads the Model without a need of this information, or that training task does not support uploading a Model as part of the pipeline. When the Pipeline's state becomes `PIPELINE_STATE_SUCCEEDED` and the trained Model had been uploaded into Vertex AI, then the model_to_upload's resource [name][google.cloud.aiplatform.v1.Model.name] is populated. The Model is always uploaded into the Project and Location in which this pipeline is.
.google.cloud.aiplatform.v1.Model model_to_upload = 7;
-
getModelId
String getModelId()
Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen.
string model_id = 22 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The modelId.
-
getModelIdBytes
com.google.protobuf.ByteString getModelIdBytes()
Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen.
string model_id = 22 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The bytes for modelId.
-
getParentModel
String getParentModel()
Optional. When specify this field, the `model_to_upload` will not be uploaded as a new model, instead, it will become a new version of this `parent_model`.
string parent_model = 21 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The parentModel.
-
getParentModelBytes
com.google.protobuf.ByteString getParentModelBytes()
Optional. When specify this field, the `model_to_upload` will not be uploaded as a new model, instead, it will become a new version of this `parent_model`.
string parent_model = 21 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The bytes for parentModel.
-
getStateValue
int getStateValue()
Output only. The detailed state of the pipeline.
.google.cloud.aiplatform.v1.PipelineState state = 9 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The enum numeric value on the wire for state.
-
getState
PipelineState getState()
Output only. The detailed state of the pipeline.
.google.cloud.aiplatform.v1.PipelineState state = 9 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The state.
-
hasError
boolean hasError()
Output only. Only populated when the pipeline's state is `PIPELINE_STATE_FAILED` or `PIPELINE_STATE_CANCELLED`.
.google.rpc.Status error = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the error field is set.
-
getError
com.google.rpc.Status getError()
Output only. Only populated when the pipeline's state is `PIPELINE_STATE_FAILED` or `PIPELINE_STATE_CANCELLED`.
.google.rpc.Status error = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The error.
-
getErrorOrBuilder
com.google.rpc.StatusOrBuilder getErrorOrBuilder()
Output only. Only populated when the pipeline's state is `PIPELINE_STATE_FAILED` or `PIPELINE_STATE_CANCELLED`.
.google.rpc.Status error = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasCreateTime
boolean hasCreateTime()
Output only. Time when the TrainingPipeline was created.
.google.protobuf.Timestamp create_time = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the createTime field is set.
-
getCreateTime
com.google.protobuf.Timestamp getCreateTime()
Output only. Time when the TrainingPipeline was created.
.google.protobuf.Timestamp create_time = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The createTime.
-
getCreateTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getCreateTimeOrBuilder()
Output only. Time when the TrainingPipeline was created.
.google.protobuf.Timestamp create_time = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasStartTime
boolean hasStartTime()
Output only. Time when the TrainingPipeline for the first time entered the `PIPELINE_STATE_RUNNING` state.
.google.protobuf.Timestamp start_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the startTime field is set.
-
getStartTime
com.google.protobuf.Timestamp getStartTime()
Output only. Time when the TrainingPipeline for the first time entered the `PIPELINE_STATE_RUNNING` state.
.google.protobuf.Timestamp start_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The startTime.
-
getStartTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getStartTimeOrBuilder()
Output only. Time when the TrainingPipeline for the first time entered the `PIPELINE_STATE_RUNNING` state.
.google.protobuf.Timestamp start_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasEndTime
boolean hasEndTime()
Output only. Time when the TrainingPipeline entered any of the following states: `PIPELINE_STATE_SUCCEEDED`, `PIPELINE_STATE_FAILED`, `PIPELINE_STATE_CANCELLED`.
.google.protobuf.Timestamp end_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the endTime field is set.
-
getEndTime
com.google.protobuf.Timestamp getEndTime()
Output only. Time when the TrainingPipeline entered any of the following states: `PIPELINE_STATE_SUCCEEDED`, `PIPELINE_STATE_FAILED`, `PIPELINE_STATE_CANCELLED`.
.google.protobuf.Timestamp end_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The endTime.
-
getEndTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getEndTimeOrBuilder()
Output only. Time when the TrainingPipeline entered any of the following states: `PIPELINE_STATE_SUCCEEDED`, `PIPELINE_STATE_FAILED`, `PIPELINE_STATE_CANCELLED`.
.google.protobuf.Timestamp end_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
hasUpdateTime
boolean hasUpdateTime()
Output only. Time when the TrainingPipeline was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- Whether the updateTime field is set.
-
getUpdateTime
com.google.protobuf.Timestamp getUpdateTime()
Output only. Time when the TrainingPipeline was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
- Returns:
- The updateTime.
-
getUpdateTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getUpdateTimeOrBuilder()
Output only. Time when the TrainingPipeline was most recently updated.
.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
-
getLabelsCount
int getLabelsCount()
The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 15;
-
containsLabels
boolean containsLabels(String key)
The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 15;
-
getLabels
@Deprecated Map<String,String> getLabels()
Deprecated.UsegetLabelsMap()
instead.
-
getLabelsMap
Map<String,String> getLabelsMap()
The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 15;
-
getLabelsOrDefault
String getLabelsOrDefault(String key, String defaultValue)
The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 15;
-
getLabelsOrThrow
String getLabelsOrThrow(String key)
The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 15;
-
hasEncryptionSpec
boolean hasEncryptionSpec()
Customer-managed encryption key spec for a TrainingPipeline. If set, this TrainingPipeline will be secured by this key. Note: Model trained by this TrainingPipeline is also secured by this key if [model_to_upload][google.cloud.aiplatform.v1.TrainingPipeline.encryption_spec] is not set separately.
.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 18;
- Returns:
- Whether the encryptionSpec field is set.
-
getEncryptionSpec
EncryptionSpec getEncryptionSpec()
Customer-managed encryption key spec for a TrainingPipeline. If set, this TrainingPipeline will be secured by this key. Note: Model trained by this TrainingPipeline is also secured by this key if [model_to_upload][google.cloud.aiplatform.v1.TrainingPipeline.encryption_spec] is not set separately.
.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 18;
- Returns:
- The encryptionSpec.
-
getEncryptionSpecOrBuilder
EncryptionSpecOrBuilder getEncryptionSpecOrBuilder()
Customer-managed encryption key spec for a TrainingPipeline. If set, this TrainingPipeline will be secured by this key. Note: Model trained by this TrainingPipeline is also secured by this key if [model_to_upload][google.cloud.aiplatform.v1.TrainingPipeline.encryption_spec] is not set separately.
.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 18;
-
-