Interface ThresholdConfigOrBuilder

  • All Superinterfaces:
    com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
    All Known Implementing Classes:
    ThresholdConfig, ThresholdConfig.Builder

    public interface ThresholdConfigOrBuilder
    extends com.google.protobuf.MessageOrBuilder
    • Method Summary

      All Methods Instance Methods Abstract Methods 
      Modifier and Type Method Description
      ThresholdConfig.ThresholdCase getThresholdCase()  
      double getValue()
      Specify a threshold value that can trigger the alert.
      boolean hasValue()
      Specify a threshold value that can trigger the alert.
      • Methods inherited from interface com.google.protobuf.MessageLiteOrBuilder

        isInitialized
      • Methods inherited from interface com.google.protobuf.MessageOrBuilder

        findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
    • Method Detail

      • hasValue

        boolean hasValue()
         Specify a threshold value that can trigger the alert.
         If this threshold config is for feature distribution distance:
           1. For categorical feature, the distribution distance is calculated by
              L-inifinity norm.
           2. For numerical feature, the distribution distance is calculated by
              Jensen–Shannon divergence.
         Each feature must have a non-zero threshold if they need to be monitored.
         Otherwise no alert will be triggered for that feature.
         
        double value = 1;
        Returns:
        Whether the value field is set.
      • getValue

        double getValue()
         Specify a threshold value that can trigger the alert.
         If this threshold config is for feature distribution distance:
           1. For categorical feature, the distribution distance is calculated by
              L-inifinity norm.
           2. For numerical feature, the distribution distance is calculated by
              Jensen–Shannon divergence.
         Each feature must have a non-zero threshold if they need to be monitored.
         Otherwise no alert will be triggered for that feature.
         
        double value = 1;
        Returns:
        The value.