Package com.google.cloud.aiplatform.v1
Interface FeatureStatsAnomalyOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
FeatureStatsAnomaly
,FeatureStatsAnomaly.Builder
public interface FeatureStatsAnomalyOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description double
getAnomalyDetectionThreshold()
This is the threshold used when detecting anomalies.String
getAnomalyUri()
Path of the anomaly file for current feature values in Cloud Storage bucket.com.google.protobuf.ByteString
getAnomalyUriBytes()
Path of the anomaly file for current feature values in Cloud Storage bucket.double
getDistributionDeviation()
Deviation from the current stats to baseline stats.com.google.protobuf.Timestamp
getEndTime()
The end timestamp of window where stats were generated.com.google.protobuf.TimestampOrBuilder
getEndTimeOrBuilder()
The end timestamp of window where stats were generated.double
getScore()
Feature importance score, only populated when cross-feature monitoring is enabled.com.google.protobuf.Timestamp
getStartTime()
The start timestamp of window where stats were generated.com.google.protobuf.TimestampOrBuilder
getStartTimeOrBuilder()
The start timestamp of window where stats were generated.String
getStatsUri()
Path of the stats file for current feature values in Cloud Storage bucket.com.google.protobuf.ByteString
getStatsUriBytes()
Path of the stats file for current feature values in Cloud Storage bucket.boolean
hasEndTime()
The end timestamp of window where stats were generated.boolean
hasStartTime()
The start timestamp of window where stats were generated.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getScore
double getScore()
Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW][google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW] and [ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT][google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT].
double score = 1;
- Returns:
- The score.
-
getStatsUri
String getStatsUri()
Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message [tensorflow.metadata.v0.FeatureNameStatistics](https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/statistics.proto).
string stats_uri = 3;
- Returns:
- The statsUri.
-
getStatsUriBytes
com.google.protobuf.ByteString getStatsUriBytes()
Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message [tensorflow.metadata.v0.FeatureNameStatistics](https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/statistics.proto).
string stats_uri = 3;
- Returns:
- The bytes for statsUri.
-
getAnomalyUri
String getAnomalyUri()
Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message [tensorflow.metadata.v0.AnomalyInfo] (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto).
string anomaly_uri = 4;
- Returns:
- The anomalyUri.
-
getAnomalyUriBytes
com.google.protobuf.ByteString getAnomalyUriBytes()
Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message [tensorflow.metadata.v0.AnomalyInfo] (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto).
string anomaly_uri = 4;
- Returns:
- The bytes for anomalyUri.
-
getDistributionDeviation
double getDistributionDeviation()
Deviation from the current stats to baseline stats. 1. For categorical feature, the distribution distance is calculated by L-inifinity norm. 2. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
double distribution_deviation = 5;
- Returns:
- The distributionDeviation.
-
getAnomalyDetectionThreshold
double getAnomalyDetectionThreshold()
This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from [ThresholdConfig.value][google.cloud.aiplatform.v1.ThresholdConfig.value].
double anomaly_detection_threshold = 9;
- Returns:
- The anomalyDetectionThreshold.
-
hasStartTime
boolean hasStartTime()
The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
.google.protobuf.Timestamp start_time = 7;
- Returns:
- Whether the startTime field is set.
-
getStartTime
com.google.protobuf.Timestamp getStartTime()
The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
.google.protobuf.Timestamp start_time = 7;
- Returns:
- The startTime.
-
getStartTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getStartTimeOrBuilder()
The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
.google.protobuf.Timestamp start_time = 7;
-
hasEndTime
boolean hasEndTime()
The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
.google.protobuf.Timestamp end_time = 8;
- Returns:
- Whether the endTime field is set.
-
getEndTime
com.google.protobuf.Timestamp getEndTime()
The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
.google.protobuf.Timestamp end_time = 8;
- Returns:
- The endTime.
-
getEndTimeOrBuilder
com.google.protobuf.TimestampOrBuilder getEndTimeOrBuilder()
The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
.google.protobuf.Timestamp end_time = 8;
-
-