Package com.google.cloud.aiplatform.v1
Interface CustomJobSpecOrBuilder
-
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
CustomJobSpec
,CustomJobSpec.Builder
public interface CustomJobSpecOrBuilder extends com.google.protobuf.MessageOrBuilder
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description GcsDestination
getBaseOutputDirectory()
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob.GcsDestinationOrBuilder
getBaseOutputDirectoryOrBuilder()
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob.boolean
getEnableDashboardAccess()
Optional.boolean
getEnableWebAccess()
Optional.String
getExperiment()
Optional.com.google.protobuf.ByteString
getExperimentBytes()
Optional.String
getExperimentRun()
Optional.com.google.protobuf.ByteString
getExperimentRunBytes()
Optional.String
getNetwork()
Optional.com.google.protobuf.ByteString
getNetworkBytes()
Optional.String
getReservedIpRanges(int index)
Optional.com.google.protobuf.ByteString
getReservedIpRangesBytes(int index)
Optional.int
getReservedIpRangesCount()
Optional.List<String>
getReservedIpRangesList()
Optional.Scheduling
getScheduling()
Scheduling options for a CustomJob.SchedulingOrBuilder
getSchedulingOrBuilder()
Scheduling options for a CustomJob.String
getServiceAccount()
Specifies the service account for workload run-as account.com.google.protobuf.ByteString
getServiceAccountBytes()
Specifies the service account for workload run-as account.String
getTensorboard()
Optional.com.google.protobuf.ByteString
getTensorboardBytes()
Optional.WorkerPoolSpec
getWorkerPoolSpecs(int index)
Required.int
getWorkerPoolSpecsCount()
Required.List<WorkerPoolSpec>
getWorkerPoolSpecsList()
Required.WorkerPoolSpecOrBuilder
getWorkerPoolSpecsOrBuilder(int index)
Required.List<? extends WorkerPoolSpecOrBuilder>
getWorkerPoolSpecsOrBuilderList()
Required.boolean
hasBaseOutputDirectory()
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob.boolean
hasScheduling()
Scheduling options for a CustomJob.-
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
-
-
-
Method Detail
-
getWorkerPoolSpecsList
List<WorkerPoolSpec> getWorkerPoolSpecsList()
Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getWorkerPoolSpecs
WorkerPoolSpec getWorkerPoolSpecs(int index)
Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getWorkerPoolSpecsCount
int getWorkerPoolSpecsCount()
Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getWorkerPoolSpecsOrBuilderList
List<? extends WorkerPoolSpecOrBuilder> getWorkerPoolSpecsOrBuilderList()
Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
-
getWorkerPoolSpecsOrBuilder
WorkerPoolSpecOrBuilder getWorkerPoolSpecsOrBuilder(int index)
Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
-
hasScheduling
boolean hasScheduling()
Scheduling options for a CustomJob.
.google.cloud.aiplatform.v1.Scheduling scheduling = 3;
- Returns:
- Whether the scheduling field is set.
-
getScheduling
Scheduling getScheduling()
Scheduling options for a CustomJob.
.google.cloud.aiplatform.v1.Scheduling scheduling = 3;
- Returns:
- The scheduling.
-
getSchedulingOrBuilder
SchedulingOrBuilder getSchedulingOrBuilder()
Scheduling options for a CustomJob.
.google.cloud.aiplatform.v1.Scheduling scheduling = 3;
-
getServiceAccount
String getServiceAccount()
Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the [Vertex AI Custom Code Service Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project is used.
string service_account = 4;
- Returns:
- The serviceAccount.
-
getServiceAccountBytes
com.google.protobuf.ByteString getServiceAccountBytes()
Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the [Vertex AI Custom Code Service Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) for the CustomJob's project is used.
string service_account = 4;
- Returns:
- The bytes for serviceAccount.
-
getNetwork
String getNetwork()
Optional. The full name of the Compute Engine [network](/compute/docs/networks-and-firewalls#networks) to which the Job should be peered. For example, `projects/12345/global/networks/myVPC`. [Format](/compute/docs/reference/rest/v1/networks/insert) is of the form `projects/{project}/global/networks/{network}`. Where {project} is a project number, as in `12345`, and {network} is a network name. To specify this field, you must have already [configured VPC Network Peering for Vertex AI](https://cloud.google.com/vertex-ai/docs/general/vpc-peering). If this field is left unspecified, the job is not peered with any network.
string network = 5 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The network.
-
getNetworkBytes
com.google.protobuf.ByteString getNetworkBytes()
Optional. The full name of the Compute Engine [network](/compute/docs/networks-and-firewalls#networks) to which the Job should be peered. For example, `projects/12345/global/networks/myVPC`. [Format](/compute/docs/reference/rest/v1/networks/insert) is of the form `projects/{project}/global/networks/{network}`. Where {project} is a project number, as in `12345`, and {network} is a network name. To specify this field, you must have already [configured VPC Network Peering for Vertex AI](https://cloud.google.com/vertex-ai/docs/general/vpc-peering). If this field is left unspecified, the job is not peered with any network.
string network = 5 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The bytes for network.
-
getReservedIpRangesList
List<String> getReservedIpRangesList()
Optional. A list of names for the reserved ip ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- A list containing the reservedIpRanges.
-
getReservedIpRangesCount
int getReservedIpRangesCount()
Optional. A list of names for the reserved ip ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The count of reservedIpRanges.
-
getReservedIpRanges
String getReservedIpRanges(int index)
Optional. A list of names for the reserved ip ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
- Parameters:
index
- The index of the element to return.- Returns:
- The reservedIpRanges at the given index.
-
getReservedIpRangesBytes
com.google.protobuf.ByteString getReservedIpRangesBytes(int index)
Optional. A list of names for the reserved ip ranges under the VPC network that can be used for this job. If set, we will deploy the job within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network. Example: ['vertex-ai-ip-range'].
repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
- Parameters:
index
- The index of the value to return.- Returns:
- The bytes of the reservedIpRanges at the given index.
-
hasBaseOutputDirectory
boolean hasBaseOutputDirectory()
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name [id][google.cloud.aiplatform.v1.Trial.id] under its parent HyperparameterTuningJob's baseOutputDirectory. The following Vertex AI environment variables will be passed to containers or python modules when this field is set: For CustomJob: * AIP_MODEL_DIR = `<base_output_directory>/model/` * AIP_CHECKPOINT_DIR = `<base_output_directory>/checkpoints/` * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/logs/` For CustomJob backing a Trial of HyperparameterTuningJob: * AIP_MODEL_DIR = `<base_output_directory>/<trial_id>/model/` * AIP_CHECKPOINT_DIR = `<base_output_directory>/<trial_id>/checkpoints/` * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/<trial_id>/logs/`
.google.cloud.aiplatform.v1.GcsDestination base_output_directory = 6;
- Returns:
- Whether the baseOutputDirectory field is set.
-
getBaseOutputDirectory
GcsDestination getBaseOutputDirectory()
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name [id][google.cloud.aiplatform.v1.Trial.id] under its parent HyperparameterTuningJob's baseOutputDirectory. The following Vertex AI environment variables will be passed to containers or python modules when this field is set: For CustomJob: * AIP_MODEL_DIR = `<base_output_directory>/model/` * AIP_CHECKPOINT_DIR = `<base_output_directory>/checkpoints/` * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/logs/` For CustomJob backing a Trial of HyperparameterTuningJob: * AIP_MODEL_DIR = `<base_output_directory>/<trial_id>/model/` * AIP_CHECKPOINT_DIR = `<base_output_directory>/<trial_id>/checkpoints/` * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/<trial_id>/logs/`
.google.cloud.aiplatform.v1.GcsDestination base_output_directory = 6;
- Returns:
- The baseOutputDirectory.
-
getBaseOutputDirectoryOrBuilder
GcsDestinationOrBuilder getBaseOutputDirectoryOrBuilder()
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name [id][google.cloud.aiplatform.v1.Trial.id] under its parent HyperparameterTuningJob's baseOutputDirectory. The following Vertex AI environment variables will be passed to containers or python modules when this field is set: For CustomJob: * AIP_MODEL_DIR = `<base_output_directory>/model/` * AIP_CHECKPOINT_DIR = `<base_output_directory>/checkpoints/` * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/logs/` For CustomJob backing a Trial of HyperparameterTuningJob: * AIP_MODEL_DIR = `<base_output_directory>/<trial_id>/model/` * AIP_CHECKPOINT_DIR = `<base_output_directory>/<trial_id>/checkpoints/` * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/<trial_id>/logs/`
.google.cloud.aiplatform.v1.GcsDestination base_output_directory = 6;
-
getTensorboard
String getTensorboard()
Optional. The name of a Vertex AI [Tensorboard][google.cloud.aiplatform.v1.Tensorboard] resource to which this CustomJob will upload Tensorboard logs. Format: `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
string tensorboard = 7 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The tensorboard.
-
getTensorboardBytes
com.google.protobuf.ByteString getTensorboardBytes()
Optional. The name of a Vertex AI [Tensorboard][google.cloud.aiplatform.v1.Tensorboard] resource to which this CustomJob will upload Tensorboard logs. Format: `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
string tensorboard = 7 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The bytes for tensorboard.
-
getEnableWebAccess
boolean getEnableWebAccess()
Optional. Whether you want Vertex AI to enable [interactive shell access](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell) to training containers. If set to `true`, you can access interactive shells at the URIs given by [CustomJob.web_access_uris][google.cloud.aiplatform.v1.CustomJob.web_access_uris] or [Trial.web_access_uris][google.cloud.aiplatform.v1.Trial.web_access_uris] (within [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials]).
bool enable_web_access = 10 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The enableWebAccess.
-
getEnableDashboardAccess
boolean getEnableDashboardAccess()
Optional. Whether you want Vertex AI to enable access to the customized dashboard in training chief container. If set to `true`, you can access the dashboard at the URIs given by [CustomJob.web_access_uris][google.cloud.aiplatform.v1.CustomJob.web_access_uris] or [Trial.web_access_uris][google.cloud.aiplatform.v1.Trial.web_access_uris] (within [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials]).
bool enable_dashboard_access = 16 [(.google.api.field_behavior) = OPTIONAL];
- Returns:
- The enableDashboardAccess.
-
getExperiment
String getExperiment()
Optional. The Experiment associated with this job. Format: `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}`
string experiment = 17 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The experiment.
-
getExperimentBytes
com.google.protobuf.ByteString getExperimentBytes()
Optional. The Experiment associated with this job. Format: `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}`
string experiment = 17 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The bytes for experiment.
-
getExperimentRun
String getExperimentRun()
Optional. The Experiment Run associated with this job. Format: `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}-{experiment-run-name}`
string experiment_run = 18 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The experimentRun.
-
getExperimentRunBytes
com.google.protobuf.ByteString getExperimentRunBytes()
Optional. The Experiment Run associated with this job. Format: `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}-{experiment-run-name}`
string experiment_run = 18 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
- Returns:
- The bytes for experimentRun.
-
-