Interface CustomJobSpecOrBuilder

  • All Superinterfaces:
    com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
    All Known Implementing Classes:
    CustomJobSpec, CustomJobSpec.Builder

    public interface CustomJobSpecOrBuilder
    extends com.google.protobuf.MessageOrBuilder
    • Method Detail

      • getWorkerPoolSpecsList

        List<WorkerPoolSpec> getWorkerPoolSpecsList()
         Required. The spec of the worker pools including machine type and Docker
         image. All worker pools except the first one are optional and can be
         skipped by providing an empty value.
         
        repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
      • getWorkerPoolSpecs

        WorkerPoolSpec getWorkerPoolSpecs​(int index)
         Required. The spec of the worker pools including machine type and Docker
         image. All worker pools except the first one are optional and can be
         skipped by providing an empty value.
         
        repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
      • getWorkerPoolSpecsCount

        int getWorkerPoolSpecsCount()
         Required. The spec of the worker pools including machine type and Docker
         image. All worker pools except the first one are optional and can be
         skipped by providing an empty value.
         
        repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
      • getWorkerPoolSpecsOrBuilderList

        List<? extends WorkerPoolSpecOrBuilder> getWorkerPoolSpecsOrBuilderList()
         Required. The spec of the worker pools including machine type and Docker
         image. All worker pools except the first one are optional and can be
         skipped by providing an empty value.
         
        repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
      • getWorkerPoolSpecsOrBuilder

        WorkerPoolSpecOrBuilder getWorkerPoolSpecsOrBuilder​(int index)
         Required. The spec of the worker pools including machine type and Docker
         image. All worker pools except the first one are optional and can be
         skipped by providing an empty value.
         
        repeated .google.cloud.aiplatform.v1.WorkerPoolSpec worker_pool_specs = 1 [(.google.api.field_behavior) = REQUIRED];
      • hasScheduling

        boolean hasScheduling()
         Scheduling options for a CustomJob.
         
        .google.cloud.aiplatform.v1.Scheduling scheduling = 3;
        Returns:
        Whether the scheduling field is set.
      • getScheduling

        Scheduling getScheduling()
         Scheduling options for a CustomJob.
         
        .google.cloud.aiplatform.v1.Scheduling scheduling = 3;
        Returns:
        The scheduling.
      • getSchedulingOrBuilder

        SchedulingOrBuilder getSchedulingOrBuilder()
         Scheduling options for a CustomJob.
         
        .google.cloud.aiplatform.v1.Scheduling scheduling = 3;
      • getServiceAccount

        String getServiceAccount()
         Specifies the service account for workload run-as account.
         Users submitting jobs must have act-as permission on this run-as account.
         If unspecified, the [Vertex AI Custom Code Service
         Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents)
         for the CustomJob's project is used.
         
        string service_account = 4;
        Returns:
        The serviceAccount.
      • getServiceAccountBytes

        com.google.protobuf.ByteString getServiceAccountBytes()
         Specifies the service account for workload run-as account.
         Users submitting jobs must have act-as permission on this run-as account.
         If unspecified, the [Vertex AI Custom Code Service
         Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents)
         for the CustomJob's project is used.
         
        string service_account = 4;
        Returns:
        The bytes for serviceAccount.
      • getNetwork

        String getNetwork()
         Optional. The full name of the Compute Engine
         [network](/compute/docs/networks-and-firewalls#networks) to which the Job
         should be peered. For example, `projects/12345/global/networks/myVPC`.
         [Format](/compute/docs/reference/rest/v1/networks/insert)
         is of the form `projects/{project}/global/networks/{network}`.
         Where {project} is a project number, as in `12345`, and {network} is a
         network name.
        
         To specify this field, you must have already [configured VPC Network
         Peering for Vertex
         AI](https://cloud.google.com/vertex-ai/docs/general/vpc-peering).
        
         If this field is left unspecified, the job is not peered with any network.
         
        string network = 5 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The network.
      • getNetworkBytes

        com.google.protobuf.ByteString getNetworkBytes()
         Optional. The full name of the Compute Engine
         [network](/compute/docs/networks-and-firewalls#networks) to which the Job
         should be peered. For example, `projects/12345/global/networks/myVPC`.
         [Format](/compute/docs/reference/rest/v1/networks/insert)
         is of the form `projects/{project}/global/networks/{network}`.
         Where {project} is a project number, as in `12345`, and {network} is a
         network name.
        
         To specify this field, you must have already [configured VPC Network
         Peering for Vertex
         AI](https://cloud.google.com/vertex-ai/docs/general/vpc-peering).
        
         If this field is left unspecified, the job is not peered with any network.
         
        string network = 5 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The bytes for network.
      • getReservedIpRangesList

        List<String> getReservedIpRangesList()
         Optional. A list of names for the reserved ip ranges under the VPC network
         that can be used for this job.
        
         If set, we will deploy the job within the provided ip ranges. Otherwise,
         the job will be deployed to any ip ranges under the provided VPC
         network.
        
         Example: ['vertex-ai-ip-range'].
         
        repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
        Returns:
        A list containing the reservedIpRanges.
      • getReservedIpRangesCount

        int getReservedIpRangesCount()
         Optional. A list of names for the reserved ip ranges under the VPC network
         that can be used for this job.
        
         If set, we will deploy the job within the provided ip ranges. Otherwise,
         the job will be deployed to any ip ranges under the provided VPC
         network.
        
         Example: ['vertex-ai-ip-range'].
         
        repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
        Returns:
        The count of reservedIpRanges.
      • getReservedIpRanges

        String getReservedIpRanges​(int index)
         Optional. A list of names for the reserved ip ranges under the VPC network
         that can be used for this job.
        
         If set, we will deploy the job within the provided ip ranges. Otherwise,
         the job will be deployed to any ip ranges under the provided VPC
         network.
        
         Example: ['vertex-ai-ip-range'].
         
        repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
        Parameters:
        index - The index of the element to return.
        Returns:
        The reservedIpRanges at the given index.
      • getReservedIpRangesBytes

        com.google.protobuf.ByteString getReservedIpRangesBytes​(int index)
         Optional. A list of names for the reserved ip ranges under the VPC network
         that can be used for this job.
        
         If set, we will deploy the job within the provided ip ranges. Otherwise,
         the job will be deployed to any ip ranges under the provided VPC
         network.
        
         Example: ['vertex-ai-ip-range'].
         
        repeated string reserved_ip_ranges = 13 [(.google.api.field_behavior) = OPTIONAL];
        Parameters:
        index - The index of the value to return.
        Returns:
        The bytes of the reservedIpRanges at the given index.
      • hasBaseOutputDirectory

        boolean hasBaseOutputDirectory()
         The Cloud Storage location to store the output of this CustomJob or
         HyperparameterTuningJob. For HyperparameterTuningJob,
         the baseOutputDirectory of
         each child CustomJob backing a Trial is set to a subdirectory of name
         [id][google.cloud.aiplatform.v1.Trial.id] under its parent
         HyperparameterTuningJob's baseOutputDirectory.
        
         The following Vertex AI environment variables will be passed to
         containers or python modules when this field is set:
        
           For CustomJob:
        
           * AIP_MODEL_DIR = `<base_output_directory>/model/`
           * AIP_CHECKPOINT_DIR = `<base_output_directory>/checkpoints/`
           * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/logs/`
        
           For CustomJob backing a Trial of HyperparameterTuningJob:
        
           * AIP_MODEL_DIR = `<base_output_directory>/<trial_id>/model/`
           * AIP_CHECKPOINT_DIR = `<base_output_directory>/<trial_id>/checkpoints/`
           * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/<trial_id>/logs/`
         
        .google.cloud.aiplatform.v1.GcsDestination base_output_directory = 6;
        Returns:
        Whether the baseOutputDirectory field is set.
      • getBaseOutputDirectory

        GcsDestination getBaseOutputDirectory()
         The Cloud Storage location to store the output of this CustomJob or
         HyperparameterTuningJob. For HyperparameterTuningJob,
         the baseOutputDirectory of
         each child CustomJob backing a Trial is set to a subdirectory of name
         [id][google.cloud.aiplatform.v1.Trial.id] under its parent
         HyperparameterTuningJob's baseOutputDirectory.
        
         The following Vertex AI environment variables will be passed to
         containers or python modules when this field is set:
        
           For CustomJob:
        
           * AIP_MODEL_DIR = `<base_output_directory>/model/`
           * AIP_CHECKPOINT_DIR = `<base_output_directory>/checkpoints/`
           * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/logs/`
        
           For CustomJob backing a Trial of HyperparameterTuningJob:
        
           * AIP_MODEL_DIR = `<base_output_directory>/<trial_id>/model/`
           * AIP_CHECKPOINT_DIR = `<base_output_directory>/<trial_id>/checkpoints/`
           * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/<trial_id>/logs/`
         
        .google.cloud.aiplatform.v1.GcsDestination base_output_directory = 6;
        Returns:
        The baseOutputDirectory.
      • getBaseOutputDirectoryOrBuilder

        GcsDestinationOrBuilder getBaseOutputDirectoryOrBuilder()
         The Cloud Storage location to store the output of this CustomJob or
         HyperparameterTuningJob. For HyperparameterTuningJob,
         the baseOutputDirectory of
         each child CustomJob backing a Trial is set to a subdirectory of name
         [id][google.cloud.aiplatform.v1.Trial.id] under its parent
         HyperparameterTuningJob's baseOutputDirectory.
        
         The following Vertex AI environment variables will be passed to
         containers or python modules when this field is set:
        
           For CustomJob:
        
           * AIP_MODEL_DIR = `<base_output_directory>/model/`
           * AIP_CHECKPOINT_DIR = `<base_output_directory>/checkpoints/`
           * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/logs/`
        
           For CustomJob backing a Trial of HyperparameterTuningJob:
        
           * AIP_MODEL_DIR = `<base_output_directory>/<trial_id>/model/`
           * AIP_CHECKPOINT_DIR = `<base_output_directory>/<trial_id>/checkpoints/`
           * AIP_TENSORBOARD_LOG_DIR = `<base_output_directory>/<trial_id>/logs/`
         
        .google.cloud.aiplatform.v1.GcsDestination base_output_directory = 6;
      • getTensorboard

        String getTensorboard()
         Optional. The name of a Vertex AI
         [Tensorboard][google.cloud.aiplatform.v1.Tensorboard] resource to which
         this CustomJob will upload Tensorboard logs. Format:
         `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
         
        string tensorboard = 7 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The tensorboard.
      • getTensorboardBytes

        com.google.protobuf.ByteString getTensorboardBytes()
         Optional. The name of a Vertex AI
         [Tensorboard][google.cloud.aiplatform.v1.Tensorboard] resource to which
         this CustomJob will upload Tensorboard logs. Format:
         `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
         
        string tensorboard = 7 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The bytes for tensorboard.
      • getEnableWebAccess

        boolean getEnableWebAccess()
         Optional. Whether you want Vertex AI to enable [interactive shell
         access](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell)
         to training containers.
        
         If set to `true`, you can access interactive shells at the URIs given
         by
         [CustomJob.web_access_uris][google.cloud.aiplatform.v1.CustomJob.web_access_uris]
         or
         [Trial.web_access_uris][google.cloud.aiplatform.v1.Trial.web_access_uris]
         (within
         [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials]).
         
        bool enable_web_access = 10 [(.google.api.field_behavior) = OPTIONAL];
        Returns:
        The enableWebAccess.
      • getEnableDashboardAccess

        boolean getEnableDashboardAccess()
         Optional. Whether you want Vertex AI to enable access to the customized
         dashboard in training chief container.
        
         If set to `true`, you can access the dashboard at the URIs given
         by
         [CustomJob.web_access_uris][google.cloud.aiplatform.v1.CustomJob.web_access_uris]
         or
         [Trial.web_access_uris][google.cloud.aiplatform.v1.Trial.web_access_uris]
         (within
         [HyperparameterTuningJob.trials][google.cloud.aiplatform.v1.HyperparameterTuningJob.trials]).
         
        bool enable_dashboard_access = 16 [(.google.api.field_behavior) = OPTIONAL];
        Returns:
        The enableDashboardAccess.
      • getExperiment

        String getExperiment()
         Optional. The Experiment associated with this job.
         Format:
         `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}`
         
        string experiment = 17 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The experiment.
      • getExperimentBytes

        com.google.protobuf.ByteString getExperimentBytes()
         Optional. The Experiment associated with this job.
         Format:
         `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}`
         
        string experiment = 17 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The bytes for experiment.
      • getExperimentRun

        String getExperimentRun()
         Optional. The Experiment Run associated with this job.
         Format:
         `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}-{experiment-run-name}`
         
        string experiment_run = 18 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The experimentRun.
      • getExperimentRunBytes

        com.google.protobuf.ByteString getExperimentRunBytes()
         Optional. The Experiment Run associated with this job.
         Format:
         `projects/{project}/locations/{location}/metadataStores/{metadataStores}/contexts/{experiment-name}-{experiment-run-name}`
         
        string experiment_run = 18 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }
        Returns:
        The bytes for experimentRun.